

 Student/Faculty Information System

PeopleSoft Query
Part III – Advanced Concepts

Presenter
Presentation Notes
PeopleSoft Campus Solutions Version 9.0PeopleTools Version 8.52

• This is the third module of instructions in the use of PeopleSoft Query. The first
two modules that introduce you to PeopleSoft Query are:
– Part I – Basic Query Concepts and Query Viewer (Lessons 1 – 4).
– Part II – Query Manager (Lessons 5 – 10)

• Part III explores more complex Query usage topics and expands on subjects
covered in Parts I and II. Before proceeding with this module, you should have a
solid understanding of the processes shown in the first two sections.

• This module includes the following Lessons:

11. Improving Query Performance
12. Join Variations
13. Expressions – More Examples
14. Wes Functions Review
15. Prompts and Table Edits
16. Counts and Sums in Query
17. Mastering Outer Joins
18. Subqueries - Introduction
19. Creating Union Queries
20. Supplementary Information

Student/Faculty Information System
PeopleSoft Query

Part III – Advanced Concepts

2

http://sfis.blogs.wesleyan.edu/files/2013/12/Intro-to-PS-Query-Part-1-Overview-and-Viewer.pdf
http://sfis.blogs.wesleyan.edu/files/2013/12/Intro-to-PS-Query-Part-2-Query-Manager1.pdf

Lesson 11: Improving Query Performance

3

1. Run Time:
After initially building a query, the first time it is
run it will be slower than on later tries. The
reasons for this are:
• The query may be saved, but is not compiled

until the first time it is run
• Behind the scenes, Oracle maps out an

execution plan and saves it in memory, so it
will usually run faster on subsequent
attempts.

2. Columns:
• Only pull the columns into the query that

you need. Not all tables are populated in
PeopleSoft, and not all fields in all
records/tables are populated.

Below are a few approaches that you might
want to consider in relation to the smooth
execution of a query. Some of this
information may be familiar from previous
lessons.

1. Run Time
2. Columns
3. Preventing a Runaway Query
4. Joins
5. Duplicates
6. Views
7. Table Ordering
8. PS Query and Security
9. Criteria – Constants and Prompts
10. Multiple Criteria Values
11. Return a Limited Number of Rows

Overview
When a query is executed, it can sometimes seem to take an fairly long time before
you see results. When you are building and testing a query, a similar situation can
arise. This lesson contains guidelines on how to fine tune query performance as to
response time, through an understanding of the underpinnings of the query process.
With careful planning and a systematic approach, you can simplify query
development and improve the overall performance of queries you create.

Lesson 11: Improving Query Performance

3. Preventing a Runaway Query
• Be sure to join all appropriate key fields to

ensure that the query does not time out.
4. Joins: (See Lesson 12 for more details on Joins)
• Because PeopleSoft is a relational database,

data is stored in multiple tables.
Consequently, a record may consist of several
tables. A single page (panel) does not
necessarily imply that the data on the page is
stored in a single table. If at all possible, join
on related records.

• Related Records are records/tables that have
their relationships/joins established on the
database side, rather than defined in the
query itself. While query does a good job of
detecting the appropriate join conditions, it is
not perfect, so be sure the joins make sense.

– The procedure for joining tables differs
depending on how the tables that are
being joined are related to each other.

– The fewer the tables that need to be
joined, the better. Reducing the
number of tables will reduce the
time it takes for the query to run.

– Adding a description: Note that
asking for Translate Table values or
description fields from other tables
will add more joins and more
overhead. Where possible, use an
Expression or a Wes Function to
supply a description.

– Not all tables can be successfully
joined. If there are no fields that
match up, you will return either no
data or a very large amount of
meaningless data – a Cartesian join.
A Cartesian join is a join of every
row of one table to every row of
another table.

4

http://sfis.blogs.wesleyan.edu/query/wesleyan-tools/test/

Lesson 11: Improving Query Performance

6. Views:
• As discussed in Part II, Views – which are

used like Records - are saved queries that
can be referenced as record sets in other
queries. They (mostly) end with a suffix of
VW as the naming convention. Some are
delivered with PS and some are created in
ITS.

• Views are available for various data
selection and restriction purposes. End
users do not have the ability to create
views.

• If a View is available as a record source
(i.e., you can see it in the PS Query grid),
then you can use it as a record source in a
query.

• However, because it is basically a saved
query, there is a slight performance hit
when joining to one.

5. Duplicates:
(See Lesson 20 for more information)
• In order to eliminate duplicates, you

may have to try several methods.
• You may have to join on more than one

field.
• The existence of many duplicates in the

query record set may mean that you
inadvertently performed a Cartesian
join.

• In general, avoid using the DISTINCT
property setting in PS Query.

• Except in the case of a very small record
set, the DISTINCT property may
dramatically decrease the performance
of the query. However, depending
upon the makeup of the query’s
elements, DISTINCT may be necessary.

5

One very useful Wesleyan View is named WES_STUDENT
(Wesleyan Student Status). It contains extensive
information about each student and, when queried
effectively, can be a valuable tool.

Lesson 11: Improving Query Performance

7. Table Ordering: (See the demonstration
Selecting Tables in the Query Page by Size)
• The order in which you bring records or

views into the PS Query grid is important.
• PS Query and Oracle have built-in

optimizers that make the code more
efficient, but in most cases it helps the
query run better if tables that are
expected to return the fewest rows are
added last in the FROM clause.

• The SQL statements that PS Query builds
are evaluated from the bottom up.
However, it will not correct a bad (or
invalid) join.

8. PS Query and Security:
• PS Query passes through row-level

security, which restricts whose data you
can see.

• If you don’t normally have access to view
data through the pages/panels, you will
be subject to the same restrictions in PS
Query.

9. Criteria - Constants and Prompts: (See the
demonstration Sorting Criteria by Selection
Data)
• You can sort criteria on the Criteria page

to improve the performance of a query.
• When you are selecting constants for a

criteria grid, and you don't know the
values for that field, click the magnifying
glass to obtain a list of valid values.

• When creating a Prompt, you will recall
that if you select a Prompt Table Edit Type,
the correct record should appear by
default. However, that is not always the
case, so you must verify that the Prompt
Table field displays the record that stores
the values that you want users to see.

6

Lesson 11: Improving Query Performance

– The UNION operator (usually fastest,
but not recommended because of
increased coding complexity (See
Lesson 19)

– The like operator may be appropriate
if a large number of values are
targeted. ACAD_PLAN like E% will
return ECON and ENGL, etc. (See
Lesson 8, Page 49, in Part II – Query
Manager)

– A Subquery is usually the slowest.
The subqueries have to be evaluated
first, and must be compiled before
the parent query runs. (See Lesson
18)

11. Return a Limited Number of Rows:
(See the demonstration Expediting the
Response by Returning Partial Results)
• When testing, in order to see an

abbreviated set of data, you can direct the
query to return a set number of rows.

10. Multiple Criteria Values:
Multiple criteria values would be a case where
you need a query that pulls, for example,
more than a single major, but not all of them.
• Build your queries incrementally.

– If dealing with multiple criteria, pull
them in one at a time, and rerun the
query after each criterion is added.

– Set temporary criteria of a single City,
rather than an entire State. This
allows you to control the output and
identify whether the query is working
correctly before you run it against
your entire target population.

• When querying for multiple values, there
are several ways to do it:

– The in list operator – recommended
(See Lesson 8, Page 45, in Part II –
Query Manager)

– Multiple OR statements

7

http://sfis.blogs.wesleyan.edu/files/2013/12/Intro-to-PS-Query-Part-2-Query-Manager1.pdf
http://sfis.blogs.wesleyan.edu/files/2013/12/Intro-to-PS-Query-Part-2-Query-Manager1.pdf
http://sfis.blogs.wesleyan.edu/files/2013/12/Intro-to-PS-Query-Part-2-Query-Manager1.pdf
http://sfis.blogs.wesleyan.edu/files/2013/12/Intro-to-PS-Query-Part-2-Query-Manager1.pdf

Lesson 11: Improving Query Performance

Below are demonstrations of three methods to aid in improving query
response time.
1. Selecting tables in the Query page by size
2. Sorting criteria in the Criteria page by selection of data
3. Expediting the response by returning partial results

1. Selecting Tables in the Query Page by Size
Selecting tables in order by size will have a big impact on query performance. Query runs using
Oracle, a relational database, which executes a query from the bottom up - the smaller the
table, the quicker the results.
• The first factor in determining the size of a table is simple – the fewer the fields, the smaller

the table.
• If a table has a “_TBL” on the end of its name, it is also normally small.
• By using an Expression, the amount of data stored in a table can be easily determined.

Here’s how:
• Counting Rows in a Query:

a. In a new custom query add the first record you would like to use in your query. For
this example, the record is the PeopleSoft delivered view named EXT_ORG_PRI_VW,
but this can be applied to any record to which you have access.

b. Create a new Expression. On the Expressions page, click on the Add Expression button.

8

Lesson 11: Improving Query Performance

1.

d. Press OK. Click on Add as Field link.
e. Run the query to view results. The results indicate the number of rows in the

record. In this example, at the time of running the query, the total count is 56933
rows.

f. Make a note of the name of the record and its size.

9

Selecting Tables in the Query page by Size
(continued)
c. Using the following sample, select the

Expression Type of “Number,” change
the Length value to “15,” and enter
“count(*)” to count the total number of
rows.

Lesson 11: Improving Query Performance

1. Selecting Tables in the Query page by Size (continued)
g. For each of the records you’re considering for the query, you would repeat this exercise

as applicable, deleting the record and selecting the next record name.
h. Once you have chosen the records to utilize, you would create the new query, selecting

the tables from largest to smallest, i.e., they will appear on the Query page in that order.

2. Sorting Criteria by Selection of Data
• Sorting criteria in the Criteria tab will also improve performance of a query. (This example is

from the query named WES_TRAIN_SORT_CRITERIA.) Once the specific criteria required have
been determined, the criteria should resemble this:

10

Lesson 11: Improving Query Performance

• All “table.field” joins should be
located in the upper portion of the
Criteria tab, with the first criteria
row relating to the largest table, etc.

11

• All outer joins (reviewed later in this
module) should be in the middle
portion of the Criteria tab.

• Most importantly, all constants and
prompts should be in the lower portion
of the criteria.

2. Sorting Criteria by Selection of Data (continued)

Lesson 11: Improving Query Performance

 3. Expediting the Response by Returning Partial Results (ROWNUM)
• If you would like to return a limited number of rows, you can use ROWNUM in an Expression.

This method could be used when testing to see a small sampling of what would be returned.

12

• A ROWNUM value is not permanently associated with a row.
a. Using the query WES_TRAIN_SORT_CRITERIA, add an

Expression with just the word “rownum” (upper or
lower case, no quotes) and a Length of 3. Click the Use
as Field link.
 b. From the Fields page, set the criteria for the new field
of rownum as “less than 16” (to limit the number of
rows to 15).

c. Click Run. When prompted for the Career, type UGRD.
d. The output looks like this. Note only 15 rows are

displayed.

Lesson 12: Join Variations
(You may want to review Lesson 7, Mastering Record

Joins and Selection Criteria, in Part II)

 Tables and Views
• A record shown in your list of records may be

either a table or a view.
• A table physically stores data. A view is a logical

representation of data and may consist of data
from multiple tables depending on how the record
was defined.

• Additionally, views may already have criteria
associated with them. Therefore, it may be easier
for users to create a query from a view rather than
a table.

• If an appropriate view is not provided and requires
data from multiple tables, the Query user must
know in which tables the data is stored, and how
to join those tables.

13

 Overview
• It is important to remember the basic

rules of table joins:
o Join records on their common keys.
o If you have an Any Record Join*,

you will add to your criteria, unless
there is only one row of data in the
record to be joined.

• A join enables you to retrieve from two or
more records or specify criteria from
more than one record. In Query,
predefined joins can be generated as a
Hierarchical join or a Related Record join.
Since these types of joins are already
predefined, you don’t have to add criteria
to manually link the records.

• Besides Auto Join, other ways to seek and
join records are:
o Record Hierarchy Joins
o Related Record Joins
o Manual Joins and Unjoins.

* An Any Record Join is made by selecting your
initial base record, then returning to select
another record.

Lesson 12: Join Variations

Record Hierarchy Joins

A Hierarchical join uses records that are parents or children of each other. The hierarchical
relationship is defined by the Parent Record. (A child table is a table that uses all the same key
fields as its parent, plus one or more additional keys.)

14

To create a Record Hierarchy
Join:

a. Select the base record
for your query and
select the appropriate
fields and criteria (in
this example,
A.CLASS_TBL).

b. From the Query page,
click the Hierarchy
Join link in the upper
part of the Chosen
Records area.

Lesson 12: Join Variations

To create a Record Hierarchy Join
(continued)
c. When you click the Hierarchy Join link,

a new page opens displaying all of the
records that have a parent/child
relationship with your selected record
of CLASS_TBL.

15

d. Select the desired record for the join
(in this case, CLASS_ATTRIBUTE).

e. The join is reflected on the Query
page.

Lesson 12: Join Variations

Related Record Joins
Related Record joins use records from non-hierarchical records that are related by common
fields. An example is a description table for common codes. On the Query page shown below
the related record is COUNTRY_TBL.

16

To create a Related Record Join:
a. Select the base record for

your query and select the
appropriate fields and
criteria. In this example
ADDRESSES.

b. From the Query page, click
the Related Record Join link
(in this case Join
COUNTRY_TBL – Countries)

c. From the Select Join Type
page, select the standard join
option and click OK.

Lesson 12: Join Variations

To create a Related Record Join (continued)
d. The new join is reflected on the Query

page.

17

Manual Joins/Un-joins
In some cases, you may need to join or un-join records
regardless of the auto joins Query has selected for you.
Some PeopleSoft-delivered tables use a different name to
further distinguish fields. In addition, custom tables may
contain institution-specific field names.

Auto Joins
Query’s Auto Join feature, which is
enabled by default, is a good tool
for getting your joins started.
Query automatically looks for
common keys when a new record
is added and creates a criteria row
for each common key
combination.

In the (Auto) Join Criteria window,
you can modify the criteria row to
be added, add additional joining
criteria, remove the joining
criteria, or accept the criteria
presented. Once you are satisfied
with the joining criteria to be
added, click the Finish button.

Lesson 13: Expressions – More Examples
(To review, see Lesson 8: Adding Expressions and Using Functions in Part II)

OVERVIEW
The main points to know about Expressions:
1. Expressions are calculations that PS Query

performs as part of a query.
2. They are created on the Expressions

Page.
3. Use them when you must calculate a

value that PeopleSoft Query does not
provide by default. The expression can
become an additional field.

4. An expression can be used like a field.
a. If you use an expression as a field,

the expression can be used like any
other field in a query.

b. When you preview the query, the
expression name appears as a
column heading in the query.

c. When selected for output, you can
change its column heading or sort it.

5. Normally, data that is the result of a
calculation is produced when the query is
run in real time.

6. You use expressions to display a field
value differently from the way you store
the value. Examples would be an
expression that displays the appearance
of a date as July 4, 2014, or an expression
that inserts a space or hyphen in a field,
or an expression that displays characters
all in upper case.

18

http://sfis.blogs.wesleyan.edu/files/2013/12/Intro-to-PS-Query-Part-2-Query-Manager1.pdf

Lesson 13: Expressions – More Examples

Reasons to use Expressions:
1. As columns in the query output
2. As comparison values in selection criteria
3. To create outer joins
4. To translate coded values
5. To use SQL commands

Using the SFIS Blog
• To create an expression, you need to know

the SQL specific syntax. Illustrations can
be found in a number of pages referenced
on the Expressions pages in the SFIS Blog.

• In the SFIS Blog you will find specific
documentation related to Wesleyan with
many ways to utilize the expression tool.

• In addition, there are links in the SFIS Blog
which will introduce you to websites and
presentations with valuable information
on working with this feature.

Additional Notes:
• On the following slide are further details

on working with expressions which
highlight:

– Aliases
– Working with Dates
– Literals and Concatenation

Expressions Demonstrations
• Following the notes are examples that will

give you a brief glimpse into what you can
do with Expressions.

– Dates

• formatting
• calculating

– Case Statement - to apply if-then-else
logic

– SUBSTR() – to extract part of a string
– Expressions and Prompts
– Expressions and mathematical

calculations

19

http://sfis.blogs.wesleyan.edu/query/wesleyan-tools/query-expressions/

Lesson 13: Expressions – More Examples
Additional Notes on Expressions

Aliases and Expressions
1. You will recall that PeopleSoft names the first

record you select as “A” and labels it as an
Alias.

a. With the exception noted below regarding
dates, the Alias must be included with the
field name in an expression, such as
A.EMPLID.

2. Dates: For expressions with dates, use the date
field without an Alias.

a. Typically you would add a date to an
expression so that the format can be changed
or to perform a mathematical function. Unless
reformatted, dates in PS appear in the form of
yyyy-mm-dd (2014-05-01).

b. The expression should not look like this:
to_char((A.ACTION_DT),'fmMonth DD, YYYY')
This would cause an error.

c. The expression should appear as:
to_char((ACTION_DT),'fmMonth DD, YYYY')

d. Embedded spaces can be removed by placing
the ‘fm’ prefix – as in ‘fmMonth DD, YYYY’

e. In order for the month to appear as May
(mixed case), rather than MAY (upper case),
type it as Month rather than MONTH.

f. SYSDATE is the term used for today’s date or
the current date.

g. See the examples below showing expressions
expression for formatting a date.

Creating Expressions Using Literals
1. Literals are text placeholders. They are useful

for combining text from two or more columns
in a query.

2. The Oracle concatenation operator is: | |
3. See Lesson 8 for a detailed example.

20

Lesson 13: Expressions – More Examples

1. Expression with a formatted date
a. This example shows a date that is formatted with

the month spelled out (using “to_char”)
b. The length is 18 characters to account for the

length of “September.”
c. As noted above, “fm” is added to remove any

embedded spaces.
d. “Month” is in mixed case so that the result is in

mixed case.

21

e. When the query is run the output
resembles the following:

2. Other Expression Text with formatted dates and results

Length Expression Text Usage
Sample
Output

10 to_char((SYSDATE),'mm/dd/yyyy') TODAY'S DATE 05/05/2014

10 ACTION_DT - 7 Date minus 7 days (no formatting) 2014-04-24

18 to_char((ACTION_DT - 7),'fmMonth dd, yyyy') Date minus 7 days April 24, 2014

18 to_char((SYSDATE + 14),'fmMONTH dd, yyyy') TODAY'S DATE plus 14 days MAY 19, 2014

a. As you can see, dates can be used in calculations with constants.
b. You can also use dates in comparisons, to subtract two date values, to derive time

values; and you can also convert a string value to a date value.

Lesson 13: Expressions – More Examples

3. Expression Using Case
a. This expression uses the Case statement which is a method for applying if-then-else logic in an

expression.
b. The expression is used to create a new field that will display “Undergraduate Student” if the

Academic Career is UGRD, “Graduate Student” if the Career is GRAD, “GLSP Student” if the
Career is GLSP; and if the Academic Career is none of these, the text that will appear in the new
field is “Check Career.”

22

c. The Case statement appears as
follows on the Edit Expression
Properties page:

d. A sample of the output would be:

Lesson 13: Expressions – More Examples

4. Expression Using substr()
a. This expression uses the substr()

method which extracts parts of a
string, beginning at the character at
the specified position, and returns the
specified number of characters.

b. This is a sample of the data returned
by a query displaying the fields of
EXT_ORG_ID and ATP_CD (Note that
the ATP_CODE field is 6 characters
long):

23

c. Some of the items in the ATP_CD field end
in one or two letters rather than numbers.
This Query will use this expression to select
just those items: substr(A.ATP_CD,5,2)

d. The expression searches for and displays
only the 5th and 6th characters in that field.

e. The “5” represents the position of the fifth
character, and “2” represents the number of
characters to be displayed. (You would use
a minus to count from the end, e.g. “-5.”)

f. The Expression Length is set at “2.”
g. The Use as Field link is activated.

Lesson 13: Expressions – More Examples

h. Once the query is run to verify the new field output, criteria can be associated with the field.
i. On the Fields page, click on the funnel next to the new field.

24

j. On the Edit Criteria Properties page, select Condition Type of “greater than” and Constant of
“99.” This will limit the output to items in the new, two-character field that are greater than
99, i.e. those items that have letters rather than numbers.

 k. When the query is run, only those ATP
Codes with letters in 5th or 6th position show
up in the query.

l. Sample rows appear as follows:

4. Expression Using substr() (continued)

Lesson 13: Expressions – More Examples

 Expressions and Prompts
1. Using an Expression with a Prompt was

demonstrated in Lesson 9, page 70. Also see
Lesson 15 about Prompts. The following is
another approach using Expressions and
Prompts together.

2. The sample query has six existing
expressions. All are from Wes Functions:

25

3. Under Criteria are currently two prompts
a. Prompt :1 relates to a field in the record.
b. Prompt :2 is associated with an Expression:

WES_GET_CLASS_YEAR(A.EMPLID)

5. Another Wes Function, named
WES_GET_MAJORS (A.EMPLID),
displays the four-letter code for each
Major linked with a student. If there is
more than one major, they are all
displayed with commas between.

6. A prompt will be created using this
expression along with the LIKE Condition
Type and the % wildcard (if desired).

7. To start, click on the Criteria tab.
8. On the Edit Criteria Properties page:

a. Under Choose Expression 1 Type,
select the Expression radio button.

b. When you do, the contents under
the Expression 1 header change.

c. Click on the lookup button to see
the available expressions.

Lesson 13: Expressions – More Examples

Expressions and Prompts (continued)

26

d. Click on the third link,
WES_GET_MAJORS(A.EMPLID). You are
returned to the Edit Criteria Properties page.
The expression now appears under Expression 1.

e. Change Condition Type to like.
f. Under Choose Expression 2 Type

change Constant to Prompt.

g. Click New Prompt to open the Edit
Prompt Properties page.

h. The only change is to add Heading
Text with a notation about the
wildcard - Enter Major (% to see all)

i. Click OK twice.

Lesson 13: Expressions – More Examples

 Expressions and Prompts (continued)
9. Run the query.

10. When the prompt box opens, after filling the

first two boxes, you can populate the third
box in a few ways:

a. The four-letter code for one major
• MATH

b. Just the % wildcard to see all majors
• %

c. The % wildcard at the beginning and/or
end with four or fewer letters entered
to see double or triple majors with one
particular one designated.

• %CSS
• ECON%
• %ENGL%

 Expressions and Mathematical Calculations
1. You can use an expression to calculate a

value mathematically and then display the
result as a new column or field.

2. The assumption is that an existing field,
MAX_AMOUNT, is to be multiplied by 125.
The expression would appear as follows.

27

a. The Expression Type is changed to
Number.

b. The total Length is changed to 17
and Decimals are changed to 2 (to
match the field).

c. And MAX_AMOUNT * 125 is entered
into Expression Text.

d. Use as Field is selected.

Lesson 13: Expressions – More Examples

Expressions and Mathematical Calculations (continued)
3. The Fields page now includes the new field (you may change the column header as

appropriate).

28

4. When the query is run, the output for the two fields is as follows:

Lesson 14: Wes Functions Review

Overview:
1. A Wes Function can be used to get a piece of data

that you continually need to extract for your output.
For example, rather than joining a table to get a
student’s class year, you can use a Wes Function in
your Query to get this information.

2. Since the term “function” as used with PeoplesSoft
Query can have a number of definitions, to
differentiate this use of the term, we refer to it as a
Wes Function.

3. A Wes Function is a method created by the Wesleyan
ITS staff that enables the PeopleSoft user to exploit
the benefit that Expressions can lend to a query. It is
pre-written text created specifically for inclusion in
Query Expressions for Wesleyan users.

4. You may incorporate functions into a query:
a. As a field
b. As part of the Where clause, which is created in

the Criteria tab
5. You can make a Wes Function part of any expression,

or you can combine more than one Wes Function into
a query.

6. Most Wes Functions start with “WES.” Those created
for a specific office may start with other letters (WRG,
WRL, WSF, etc.). If you have security access to the
pertinent tables, you can use those functions. (Note:
Admission related queries may not work properly
since that office no longer uses PeopleSoft for
recruiting and admitting purposes. They mostly start
with WAD.)

29

Locating Wes Functions:
1. Information on using Wes Functions is in the SFIS

Blog. There you will find -
a. A number of Wes Function demonstrations.
b. A list that contains tested functions. The

entries contain the description, sample
output, text, source fields, field type, length
and notes for each function.

2. In addition, in PeopleSoft there is a menu with a
searchable listing that provides a quick glimpse of
functions, as well as a brief description of each.
(All these functions contain the word “GET.”)

a. The navigation is: Main Menu > Wesleyan
Menu > Campus Community > Database
Function List.

b. You can view the entire list or search for a
specific function. If you don’t know the full
name, you can search with the % wildcard.

3. You can copy the text from either list into your
expression, being sure to change the Alias as
appropriate. To avoid errors, observe and enter
the length of the output that is required, and be
sure to click on the Use as Field link if you want to
use it as a field in your query.

http://sfis.blogs.wesleyan.edu/query/wesleyan-tools/query-function-list/
http://sfis.blogs.wesleyan.edu/query/wesleyan-tools/query-function-list/
http://sfis.blogs.wesleyan.edu/files/2013/04/QueryFunctionsListAll-REV-Nov-2012.pdf

Lesson 14: Wes Functions Review

Wesleyan Function Examples:

EMPLID
Many of the Wes Functions are based on the
EmplID field; that is, if the table/ record you are
querying contains the EmplID field, you can create
new fields with EmplID related information.
Examples include:

– WES_ACTIVE_STUDENT(A.EMPLID)
– WES_GET_ADMIT_TERM(A.EMPLID)
– WES_GET_CITIZENSHIP (A.EMPLID)
– WES_GET_CLASS_YEAR (A.EMPLID)
– WES_GET_CONTACT_CODES(A.EMPLID)
– WES_GET_EMAIL_USERNAME(A.EMPLID)
– WES_GET_ENRL_STATUS(A.EMPLID)
– WES_GET_EXP_GRAD_TERM(A.EMPLID)
– WES_GET_MAJORS(A.EMPLID)
– WES_GET_NAME (A.EMPLID)
– WES_GET_PREFERRED_EMAIL(A.EMPLID)
– WES_GET_STUDENT_TYPE(A.EMPLID)
– WES_GET_STUDENTS_ADVISORS(A.EMPLID)
– WES_GET_WESPO(A.EMPLID)

EMPLID Plus Other Fields
There are Wes Functions that are based on the EmplId
field plus other fields. The other fields can be from
the same record or different records:

– WES_GET_ABSENCE_REASON
(A.EMPLID,A.STRM,A.FORM_OF_STUDY)

– WES_GET_FORM_OF_STUDY
(A.STRM,A.EMPLID,A.ACAD_CAREER)

– WES_GET_FOS_WITH_AGREEMENT
(A.STRM,A.EMPLID,A.ACAD_CAREER)

– WES_GET_SRVC_IND(A.EMPLID,A.SRVC_IND_CD,A
.SRVC_IND_ACT_TERM)

– WES_GET_TERM_LEVEL(A.EMPLID,A.STRM)
– WRG_GET_ADMIT_TERM(A.EMPLID,A.ACAD_CAR

EER)
Full Descriptions of Fields:
Some Wes Functions produce the description of a
given field, such as:

– WES_GET_ACAD_ORG_DESCR(A.ACAD_ORG)
– WES_GET_ACAD_PLAN_DESCR(A.ACAD_PLAN)
– WES_GET_ACAD_PROG_DESCR(A.ACAD_PROG)
– WES_GET_COUNTRY_NAME(A.COUNTRY)
– WES_GET_PROG_REASON_DESCR(A.PROG_ACTI

ON, A.PROG_REASON)
– WES_GET_TERM_DESC(A.STRM)

30

http://sfis.blogs.wesleyan.edu/files/2013/04/QueryFunctionsListAll-REV-Nov-2012.pdf

Lesson 14: Wes Functions Review
Today’s Date and Term
Today’s Date is referenced in some Wes
Functions. You can include the designation of
SYSDATE between the parentheses or you can
leave the area empty as shown in the
examples:

– WES_GET_ADVISEE_TERM()
– WES_GET_CURRENT_TERM()
– WES_GET_FALL_SPRING_TERM()
– WES_GET_MILL_TERM()
– WES_GET_NEXT_TERM()
– WES_GET_UGRD_TERM ()
– WRG_GET_REGISTRATION_STRM()
– WRL_GET_CURR_TERM()

Variations in Results
You can apply variations to some functions in
how the result is presented. For example, to
specify a particular kind of Phone - cell, home,
or local - these options are available:

– WES_GET_PHONE(A.EMPLID,'CELL')
– WES_GET_PHONE (A.EMPLID,'HOME')
– WES_GET_PHONE (A.EMPLID,'LOC1')

The function related to Citizenship can return a
number of possible displays, such as:

– WES_GET_CITIZEN_STATUS_DESCR
(A.CITIZENSHIP_STATUS,A.COUNTRY)

– WES_GET_CITIZENSHIP (A.EMPLID,'CODE')
– WES_GET_CITIZENSHIP (A.EMPLID,'DESCR')
– WES_GET_CITIZENSHIP_STATUS(A.EMPLID)
– WES_GET_CITIZENSHIP_STATUS(A.EMPLID,'LONG

')
– WES_GET_CITIZENSHIP_STATUS(A.EMPLID,'SHOR

T')

The Name field display can also be presented
in a few different ways:

– WES_GET_NAME (A.EMPLID,'N')
– WES_GET_NAME_PARTS(A.EMPLID,'PRI',SYSDATE,

'F L')
– WES_GET_NAME_PARTS(A.EMPLID,'PRI',SYSDATE,

'F')
– WES_GET_NAME_PARTS(A.EMPLID,'PRI',SYSDATE,

'L, F M')

31

Lesson 15: Prompts and Table Edits

Overview:
1. Prompts extend the life of a query and make

the query more flexible for future requests.
For example, instead of hard-coding a
course ID value in the criteria, you can
prompt the user to enter a course ID.

2. The query becomes more flexible, and you
do not have to create multiple queries with
hard-coded constant values for each course
ID. You run the query, and the query
prompts you for the course ID.

Restricting User Input with Table Edits
The Edit Type drop down on the Edit Prompt
Properties page is where you can restrict user
input by using table edits. There are three types
of restricted edits:
1. Prompt Table Edit

a. This type of edit restricts selection to
only data that is in a Prompt Table.

b. A lookup button (magnifying glass)
under the Prompt Table header
displays the source for the prompt.

c. You click the lookup icon and then
search and select a value for the
Prompt Table.

d. Note: If you select a Prompt Table
edit type, the correct record should
appear by default. However, that is
sometimes not the case, so you
should verify that the Prompt Table
field displays the record that stores
the values you want users to see.
(See the demonstration beginning
on Slide 30 about this topic.)

2. Translate Table Edit
a. This type of edit restricts selection

to only data that is in the Translate
table (PSXLATITEM). The Translate
Table is a PeopleTools table with
predefined values that are
associated with a particular field.

b. A drop down list box indicates a
Translate Table runtime prompt.

3. Yes/No Table Edit
a. This type of edit restricts you to

selecting only yes (Y) or no (N)
values.

32

Lesson 15: Prompts and Table Edits
Unrestricted User Input
In addition, you can create a prompt without a table edit.
1. No Table Edit

a. Some fields are unrestricted and have no edits. A likely field for no table edit is Date.
b. A prompt text box (rather than a drop down) indicates that there is no table edit.
c. Another example of a no edit prompt is using a wild card for prompt criteria.

a. Make sure that for the prompt definition the edit type is 'No Table Edit.'
b. Also while using a wildcard prompt in the Criteria definition, remember to make sure

the operator is 'Like' and not 'Equal to'

33

No Table Edit Example (Edit Prompt Properties page)
1. Change Edit Type from Prompt Table to No Table Edit
2. If necessary, remove Prompt Table name. There can be no Prompt Table name if

the Edit Type is not also a Prompt Table.
3. Note that the prompt is a text box.

http://sfis.blogs.wesleyan.edu/files/2010/04/Query-Reference-Demo-8-Prompt-with-Wildcard.pdf

Lesson 15: Prompts and Table Edits

Demonstration – Making a Change to the
Prompt Table Edit Type (Edit Prompt Properties
page)
1. In the Introduction to Query Class Part II,

Lesson 9: Adding a Runtime Prompts, Slide
66, a prompt was created to ask the user to
enter a two-letter state abbreviation. (The
original query is named
WES_TRAINING_STATE_ZZZ_PUBLIC.)

2. When initially observed, these fields on the
Edit Prompt Properties page for the State
appeared as follows:

3. The Edit Type was changed to No Table Edit
and the Prompt Table was changed to No
Value:

4. The reason for this change is that the table
listed under Prompt Table - which is
STATE_TBL - does not render a list that the
user can utilize.

5. This example points out one problem with
the prompt system. It tries to guess at what
you are doing and occasionally gets it wrong.

a. What it is trying to do is make sure that
the state code you entered is valid by
checking it against the items listed in
STATE_TBL.

b. When you try to run a prompt based on
that table, you receive the message “No
matching values were found.“

6. You have two options to resolve the situation.
a. You can change the Edit Type to No

Table Edit and change the Prompt Table
to No Value.

b. Or you can retain the Edit Type and
change the Prompt Table to another
table. Either will work. The advantage
of the latter option is that it retains the
ability to search for valid values.

7. Note that most prompts you set up won’t
need this extra detail. You will be able to
setup a prompt and go.

 34

Lesson 15: Prompts and Table Edits

Demonstration – Find and Use Correct
Prompt Table (Edit Prompt Properties page)
1. Click on the magnifying glass under the

Prompt Table header. (As the cursor rolls
over the magnifying glass you may see the
words “Select a Prompt Table”).

2. The following page opens

3. In the text box (next to “begins with,” type

the word state (upper or lower case). A
list opens displaying 30 of 50 choices for a
prompt table.

4. Click on View All to see the entire list of
tables. The Select a Prompt Table list
appears as follows.

35

5. For purposes of this exercise, we are only
looking for addresses in the United States.
Scroll through the list of names.

a. There are a few tables that appear to be
exclusively related to the US. However,
unless you know the best table, there is
some trial and error involved.

b. You will need to select a likely table, and
save the prompt on the Edit Prompt
Properties page.

c. Select STATE_NM_USA_VW. When you
do so, it appears under the Prompt
Table header.

d. Change the Edit Type from No Table Edit
to Prompt Table.

Lesson 15: Prompts and Table Edits

36

f. To test if this is the correct Prompt Table,
you can begin to run the query up
through the point of observing the list
shown for the State when prompted.

g. Note that once you observe the prompt
output, you can cancel out without
actually running the prompt.

6. Return to the Edit Prompt Properties page,

and click on the Prompt Table lookup
button to observe the list of tables that
begin with STATE.

a. Within the Select a Prompt Table list,
there is a table named STATE_US_VW
- US States - no country or fed. This
view also contains state names related
to the United States but is shorter
than the previous one.

Demonstration – Find and Use
Correct Prompt Table (continued)
e. The two fields now look like this:

h. The Look Up State prompt output for
STATE_NM_USA_VW - State USA View
includes 93 items, many of which are not
desired. So another table must be selected.

Lesson 15: Prompts and Table Edits

 Demonstration – Find and Use
 Correct Prompt Table (continued)

37

b. Select STATE_US_VW so that it
appears under the Prompt Table
header. The final appearance of the
Edit Prompt Properties page using
this view is as follows:

c. Click OK twice, and run the query.
d. The Look Up State prompt list

from STATE_US_VW has 66 rows.

e. Choose State and Class Year, click OK. The
output should resemble the following.

f. To preserve these changes, save the query
under a new name. You can see a version in PS
named WES_TRAINING_STATE_ZZZ_PUBPRM

Lesson 16: Counts and Sums in Query
(Aggregate Functions and Having Criteria)

 Overview
1. In this lesson, you will learn how to use

predefined aggregate functions in a query and
create Having Criteria for an aggregate field.

2. Instead of returning many rows of data, you
may only be interested in a count of rows or a
sum of a numeric field. You can produce
these results using Query.

Aggregate Functions are created on the Edit Field
Properties page.

Describing Aggregate Functions and Having
Criteria
1. In Query Manager, you use:

a. Aggregate functions to associate query
fields with predefined calculations

b. Aggregate functions to return a single
value for multiple rows of output

c. The Having page to access fields that use
aggregate functions in selection criteria

38

Using Aggregate Functions
1. You can use the aggregate function to

group data and perform calculations on a
field that is within the group.

2. For instance, instead of viewing all rows of
data, you want to view only a count of
rows; or you may want to have an average
or sum by a given category.

Having Criteria
1. When you associate a field with an

aggregate, you cannot use that field in
selection criteria.

2. Structured Query Language (SQL)
supports the use of aggregate functions in
the WHERE clauses, but PeopleSoft
applications don’t.

3. Because the Criteria page corresponds to
a SQL statement’s WHERE clause,
PeopleSoft Query provides the Having
page.

Lesson 16: Counts and Sums in Query
(Aggregate Functions and Having Criteria)

Having Criteria (continued)
4. The Having page enables you to add criteria

on the aggregate instead of on the field
generating the aggregate.

5. The Having page criteria appear in a SQL
statement’s HAVING clause.

6. If you experience problems with a query that
is associated with aggregates, keep in mind
that aggregate functions are not supported
in the WHERE clause. The Criteria page
creates the WHERE clause. Remember that
you can use fields to join tables.

Using Predefined Aggregate Functions
1. When you apply an aggregate function to a

field, PeopleSoft Query replaces the field,
wherever it occurs, with the results of the
function.

2. The table to the left lists the aggregate
functions in Query Manager and their uses.

Uses of Aggregate Functions

39

Aggregate
Function

Use

Sum Adds the values from each row
and displays the total.

Count Counts the number of rows.

Min
(Minimum)

Checks the value from each row
and returns the lowest one.

Max
(Maximum)

Checks the value from each row
and returns the highest one.

Average Adds the values from each row
d di id h l b h

Lesson 16: Counts and Sums in Query
(Aggregate Functions and Having Criteria)

Demonstration – Using Aggregate Functions
1. In this example, a query retrieves one row for every active Academic Plan. The total number of

rows returned in this query is 254.

40

2. If the goal is simply to count the number
of Acad Plans, a better way is to use the
Count function, on the Edit Field
Properties page, as this example
illustrates.

a. Under Aggregate, select the Count
radio button.

b. Change the radio button under
Heading from RFT Short to Text.

c. Change Heading Text from Acad
Plan to Count Acad Plan.

d. Click OK

Lesson 16: Counts and Sums in Query
(Aggregate Functions and Having Criteria)

3. When you run the query, one row displays the number of plans that are in the record:

41

• When you aggregate a field, you cannot use Query to manipulate the individual field
values.

• In the previous example, if you try to add criteria on the ACAD_PLAN field, you find
that the ACAD_PLAN field no longer exists; there is only a count of the field.

• For this reason, standard criteria do not work on an aggregated field. You must use
Having criteria.

• Note that you cannot use the Sum or Average function with character fields.

Demonstration – Using Aggregate Functions (continued)

Lesson 16: Counts and Sums in Query
(Aggregate Functions and Having Criteria)

Using Having Criteria in Queries
1. When you create a Row of Having

Criteria, note that you can add the
criteria from the Fields page, and
then the system populates Expression
1 of the Having criteria. You do not
have to access the Having page or the
Edit Having Criteria Properties page.
Those steps are optional.

2. The Edit Having Criteria Properties
page is identical to the Edit Criteria
Properties page, except that when
you select the field for Expression 1,
Query Manager lists only the fields
that are associated with an aggregate
function on the Select a field page.
Those pages are shown in the
following example.

Demonstration – Select a Field and Edit Having
Criteria Properties Pages
1. In this example, based on a different table,

two fields are selected, EMPLID and
COUNTRY.

2. First, apply the Count aggregate function.
a. Select the Fields page, and then click on

the Edit button for the EMPLID field.
b. Select the Count option in the

Aggregate group box, and then click the
OK button.

42

Lesson 16: Counts and Sums in Query
(Aggregate Functions and Having Criteria)

Demonstration – Select a Field and Edit Having Criteria Properties Pages (continued)
c. If you run the query at this time, the output would appear as follows showing how many

EMPLIDs there are for each Country. These are the first few entries.

43

5. To add rows of Having criteria:
a. Select the Fields page, and then

click on the Add Criteria button
(funnel) for the EMPLID field.

b. The Edit Having Criteria
Properties page opens.

c. At this point you select a
Condition Type as you would
with regular criteria.

Lesson 16: Counts and Sums in Query
(Aggregate Functions and Having Criteria)

Demonstration – Select a Field and Edit Having
Criteria Properties Pages (continued)
d. Select the Condition Type of less than and

type the Expression 2 Constant of 5. Click
the OK button and Save.

Note: If you apply the criteria from the Fields
page after an aggregate is applied (as described
here), the system creates the criteria as Having
criteria. This approach eliminates the need to
define Expression 1 for the criteria.

44

e. When the query is run now, only the Countries with a count of EMPLIDs fewer than 5 will
be displayed:

Lesson 17: Mastering Outer Joins

Overview
1. An outer join returns all rows that satisfy

the join condition and also returns some or
all of those rows from one table for which
no rows from the other satisfy the join
condition.

2. An outer join forces a row from one of the
participating tables to appear in the result if
no matching row exists. In an outer join, all
rows of data are included from the master
table (the first record added to the query).
Matching rows from the subordinate table
are also included.

3. In a left outer join, all rows of the first (left)
record are present in the result set, even if
there are no matches in the joining record.
If there isn’t a match in the second table, a
blank or NULL is returned for fields that are
pulled from that table.

4. Outer joins combine aspects of record-
hierarchy joins and subqueries (subqueries
are discussed later).

a. Remember that a record-hierarchy
join retrieves rows for which fields
match from different tables, for
example, A.Field1 equals B.Field1.

b. A subquery may retrieve rows that
don’t exist in a secondary table.

5. As you will see in the first demonstration,
the Edit Criteria Properties page
provides a drop down list box in which
you can select the criteria that belongs to
the On clause for outer joins or the
WHERE clause for other join types.

 45

NOTE: Under Join Type, when you select Left outer
join, you must join to the most recently added
record in the query, or you will receive an error
message. If you are creating a query with more
than two records, be sure to add the “left” record
just before the “right” record.

Lesson 17: Mastering Outer Joins

Demonstration - Outer Join selecting criteria
that belongs to On Clause
• This example shows you one way in which an

outer join can be used.
• The initial query displays the ID of each

Prospect’s Last School Attended
(LAST_SCH_ATTEND).

• If you wanted to see the name of the Last
School Attended, you could join the
EXT_ORG_TBL. *

• However, if it were joined with a Standard Join,
those rows that did not have an entry under
LAST_SCH_ATTEND would not be included in
the query results.

• In order to see those rows, we need to do an
Outer Join.

• Note: This is an example of joining fields that
do not have the same name.

* In real life, relying on the EXT_ORG_TBL is
unnecessary. There is a Wesleyan Function that can
display the name of an external organization -
WES_GET_ORG_NAME(A.EXT_ORG_ID)

1. A query is created from the table WES_PROAPP
containing the following fields:

2. The criteria are:

3. To join the EXT_ORG_TBL as an outer join, the
Join Type page will appear as follows:

46

(These examples of working with outer joins are based on data from the formerly used
Admission Module.)

EMPLID - Empl ID
ADMIT_TERM - Admit Term

LAST_SCH_ATTEND - Last School Attended

APPL_ON_FILE - Application On File

Pay very close attention to this warning! When you see it, either
make a join, or remove the table.

Lesson 17: Mastering Outer Joins

4. When we click the Join Record of “Join to get additional fields only (Left outer join)” we get
this warning. This is because the fields we will be joining have different names:

6. The standard effective date criterion is automatically added.
7. Select the field DESCR – Description from EXT_ORG_TBL for display in the query.

 47

5. In this case we know that A.LAST_SCH_ATTEND is really the same as B.EXT_ORG_ID. We will
be creating criteria to that effect and make it part of the outer join clause. So click OK.
When the next popup appears, regarding the Effective Date, click OK again.

Demonstration - Outer Join selecting criteria that belongs to On Clause (continued)

Lesson 17: Mastering Outer Joins

Demonstration - Outer Join selecting criteria that belongs to On Clause (continued)

8. We now add criteria with a Condition Type of A.LAST_SCH_ATTEND equal to B.EXT_ORG_ID.
9. We make the criteria part of the outer join clause by selecting under “This criteria belongs to”

the drop down item “ON clause of outer join B.” *

48

10. Once added, the Edit Criteria
Properties page should look as follows:

 * Note: This is an important factor to
consider when adding criteria to a query
that has an outer join. You must make sure
that the criteria “belong” to the correct
clause of the query. This determines
whether the criteria is applied before the
join is made (limiting the rows that could be
joined) or after the join is made (limiting the
results of the join).

See more information on the next slide.

Lesson 17: Mastering Outer Joins

11. After clicking OK, observe the Criteria page:

12. Since there is an outer join in the query, the Belongs to column is displayed.
a. As referenced above, this indicates whether a criterion belongs to the main query

(the value is blank), so that it is applied before the join,
b. or it indicates if the criterion belongs to a specific record (the value is an alias letter –

B in this case), so that it is applied after the join.
13. When Query Manager added the join criteria from the Auto Join Criteria step, it set

them to belong to the ON clause of outer join B because we need to limit the rows
being joined to those having matching values in record A (WES_PROAPP).

a. The two criteria we added before the outer join – ADMIT_TERM and APPL_ON_FILE -
belong to the WHERE clause because Admit Term and Application on File are not in
EXT_ORG_TBL and have no effect on whether there is a matching row in
EXT_ORG_TBL.

49

Demonstration - Outer Join selecting criteria that belongs to On Clause (continued)

Lesson 17: Mastering Outer Joins

14. Effective Date: The third row on the Criteria page – B.EFFDT <= Current Date – introduces
another element that needs to be addressed before the query is complete.

a. If the query were run at this point, it would only return rows where the LAST_SCH_ATTEND
is actually populated. That’s because the EXT_ORG_TBL is effective dated. We have to add
criteria that accounts for null effective dates for that field.

b. This involves reordering and grouping the rows in Criteria that are related to the Effective
Date and External Org ID fields.

50

Demonstration - Outer Join selecting criteria that belongs to On Clause (continued)

c. On the Criteria page, click on the
yellow Reorder Criteria button to
open the Edit Criteria Ordering
page.

d. On the Edit Criteria Ordering page
move the third row (B.EFFDT) by
typing a “3” under the “New
Position” column in the fourth row.

e. When you click OK, the Criteria
page reopens and rows 3 and 4
have changed places.

Lesson 17: Mastering Outer Joins

51

f. Add a new criteria row from EXT_ORG_TBL of
EXT_ORG_ID and make the Condition Type ”is
null.”

g. On the Criteria page:
i. Change the AND on the EXT_ORG_ID row

to OR.
ii. Click on the yellow Group Criteria button.

Demonstration - Outer Join selecting criteria that belongs to On Clause (continued)

iii. On the Edit Criteria Grouping page, put opening and closing parentheses at
the beginning and end of the criteria related to the Effective Date and
External Org fields.

Lesson 17: Mastering Outer Joins

15. After clicking OK, the Criteria page should now look like this:

16. And when the query is run, a typical portion of the output will resemble this. The Prospects not
associated with a last school each have rows, but have a blank column for Lst School and Descr.

52

Demonstration - Outer Join selecting criteria that belongs to On Clause (continued)

Lesson 17: Mastering Outer Joins

You may on occasion come across an existing query that incorporates a field or fields with the
notation of (+) attached. This is another method for creating an outer join which can be used for
the rare occasion when you cannot join with the most recently added record in the query.

5. To perform an outer join using this approach, when adding the EXT_ORG_TBL select the first
option under Join Type (Standard Join).

53

Demonstration - Outer Join using (+)
 1. This demonstration uses the same tables as the first Demonstration, but identifies the join in a

different way.
2. To create an outer join with this methodology, you must include a plus sign in parentheses (+)

after the key fields of the subordinate record in the criteria that link the records.
3. You will perform an Any Record join and code an expression that contains the (+) instead of a

field. The following example uses Define Expression on the Edit Criteria Properties page.
4. This query begins with the same table and fields and criteria as the previous query.

Lesson 17: Mastering Outer Joins

Demonstration - Outer Join using (+) (continued)

6. The warning message regarding no join
conditions being found will appear.

7. The standard effective date criterion is
automatically added.

8. The join criteria is modified as follows.
a. On the Criteria page, add

A.LAST_SCH_ATTEND.
b. On the Edit Criteria Properties page, in

the Condition Type operator field, accept
the value of equal to.

c. In the Choose Expression 2 Type field,
accept the value of Expression.

54

d. Under Define Expression, click Add Field.
Select the required field from the second
record, i.e. B.EXT_ORG_ID.

e. Manually enter (+) after the field name in
the Expression Box on the Edit Criteria
Properties page and click OK.

f. Follow the instructions from the previous
demonstration starting at Step 14 to
account for the Effective Date.

g. Run the query.

Lesson 18: Subqueries - Introduction

Overview
1. A subquery is a query whose results are used within a query.
2. By creating nested queries, the primary query displays the fields necessary for the results and

the subordinate query serves as criteria that filter the data.
3. Subqueries compare the value for a field in the primary query to the results of a subordinate

query. The subordinate query is imbedded in the WHERE clause using the Criteria page.
4. The Condition Type that you specify in the criteria determines what the subquery returns to

the query.
5. A subquery can retrieve only one data field from a single table, and the subquery can contain

a join. You can use this feature to specify criteria based on two records.
6. You never see the result of the subquery itself; you see the results of the primary query. The

subquery is part of the criteria that limits the return.
7. You can place additional rows of criteria in the primary query or the subquery.

One way to look at a subquery -
• Sometimes, before you can answer a question, you need to answer one or more

other questions.
• You could run one query to give you results to use in another query.
• However, rather than creating two queries, you can use a subquery to collect the

information. The result of the subquery can be used like a field or expression in
the main query criteria.

55

Lesson 18: Subqueries - Introduction

There are two general ways to use a subquery:
Test for existence or non-existence
In this situation you have a subquery that selects rows based on a set of criteria. Then, in your Parent
query, you have one criterion that specifies to select a row that exists in that subquery result set or
does not exist in the subquery result set. Examples:

56

Compare a field to a list
In this situation you have a subquery that again selects rows based on a set of criteria. In this case,
however, the subquery returns a list of values for one field. Then, in the parent query, you have one
criterion that compares a field or expression to the subquery to determine if there is (or is not) a
matching value in the subquery list. Examples:

Parent Query Operator Subquery
Selects all prospects where… …a record for that prospect exists in the

subquery, which…
…selects all prospects who have submitted
test scores.

Selects all prospects where… …a record for that prospect exists in the
subquery, which…

…selects all prospects who have a certain
Academic Interest.

Selects all applicants where… …a record for that applicant does not exist
in the subquery, which…

…selects Immunization data for the
applicant.

Parent Query Operator Subquery
Selects all prospects where EMPLID… … is in the list of EMPLIDs returned by the

subquery, which…
…selects the EMPLID of all prospects who
have submitted test scores.

Selects all prospects where EMPLID… … is in the list of EMPLIDs returned by the
subquery, which…

…selects the EMPLID of all prospects who
have a certain Academic Interest.

Selects all applicants where EMPLID… … is not in the list of EMPLIDs returned by
the subquery, which…

…selects the EMPLID of all applicants with
Immunization data.

Lesson 18: Subqueries - Introduction

• The following demonstration was adapted from a presentation on subqueries given at a
regional conference by a representative from Northern Illinois University.

• That was based on the STDNT_CAR_TERM table. This example uses the WES_STUDENT table.
• The query displays how to incorporate the same table more than once in the query.
• It also shows the use of a minimum value for the criteria.

1. The scenario is that we want to see a list of all currently enrolled Undergraduate and
Graduate students with their first term. For this example, the current term is 1141.

2. The query is created using two instances of WES_STUDENT.
a. The first instance of WES_STUDENT is used to identify the current term of

enrollment (1141).
b. The second instance of the table is used to get term data for all terms for

students from first to most recent, i.e. the current term.
3. From the Records page, select WES_STUDENT. On the Query page select these fields:

i. EMPLID
ii. ACAD_CAREER
iii. STRM
iv. FORM_OF_STUDY

57

Demonstration – Using a subquery to identify first term of enrollment

http://sfis.blogs.wesleyan.edu/files/2014/05/HEUGUM-PS-Query-Subqueries.pdf

Lesson 18: Subqueries - Introduction

58

Demonstration – Using a subquery to identify first term of enrollment

4. On the Criteria page, set the first
three criteria to see all Undergrads
and Grads enrolled in Term 1141.

 5. Join the second instance of WES_STUDENT to the
first:

a. On the Join Type page, select Standard Join.
Click to join the record.

b. On the Auto Join Criteria page, uncheck
A.STRM so that the second instance of the
table (B) will look at all Terms.

c. Click Add Criteria.

6. On the Query page, select STRM for the just added B table.
7. Add two more criteria to the Criteria page to link fields between A and B – ACAD_CAREER and

STDNT_CAR_NBR:

Lesson 18: Subqueries - Introduction

9. To limit the output to only the
first term for each student, you
can create a subquery on STRM
from the second instance of
WES_STUDENT.

59

Demonstration – Using a subquery to identify first term of enrollment (continued)

10. Click Add Criteria for B.STRM. On the
Edit Criteria Properties page:

a. Leave the Condition Type as
“equal to.”

b. Under Choose Expression 2 Type,
select “Subquery.”

c. Click on the link Define/Edit
Subquery.

8. Run the query. There are multiple
rows for each student who meets
the criteria, i.e. a row for each term
the student has been enrolled. For
example, the first eight rows
represent one student’s terms.

Lesson 18: Subqueries - Introduction

10. The following page opens. Do a search for the table which is to be used for the subquery.
In this example it is the same table as used in the main query, i.e. WES_STUDENT.

60

Demonstration – Using a subquery to identify first term of enrollment (continued)

11. You’ll see that in some ways the page resembles the Records page. However, it also has:
a. The additional identifier of Working on selection Subquery for B.STRM – Term and
b. The link Subquery/Union Navigation to enable toggling between the subquery and

the main query.

Lesson 18: Subqueries - Introduction

12. When you click on Add Record, the
subquery Query page opens.

a. It resembles a regular Query
page, but it has the two
elements described above,
and

b. Next to each field is a Select
link.

13. Click on the Select link next to
STRM. The subquery Fields page
opens.

14. Click on the Edit button to open the Edit Field Properties page.

61

Demonstration – Using a subquery to identify first term of enrollment (continued)

Lesson 18: Subqueries - Introduction

15. Under Aggregate, select Min, i.e. you are looking for the first Term in the subquery for each student.

16. Open the Criteria page and add the following:
a. Join the subquery instance of WES_STUDENT (C) to the second top-level instance (B) of

WES_STUDENT. The three fields to be joined are EMPLID, ACAD_CAREER and STDNT_CAR_NBR.
b. You will recall that in the top-level instance of WES_STUDENT, the FORM_OF_STUDY was equal to

ENRL. The same field needs to be selected in the subquery.
c. The Criteria page under subquery should now have these rows:

62

Demonstration – Using a subquery to identify first term of enrollment (continued)

Lesson 18: Subqueries - Introduction

17. Click on the Subquery/Union Navigation link.

18. And then click on the Top Level of Query link.

19. Run the query. You’ll see that the number of rows has
been significantly decreased so that only one row
appears for each student. The last column in each row
is the first term for that student.

63

As mentioned in the
section on improving
query performance, when
querying for multiple
values, a subquery is
usually the slowest in that
the subqueries have to be
evaluated first, and must
be compiled before the
parent query runs.

A Union is two (or more) separate select
statements (queries)* that are brought
together in the same query.

There are three rules you must follow when
using a Union:

1. Each query must consist of the same
number of fields/columns.

2. Each query must consist of the same
data types

3. The field data types in each query
should correspond, i.e. be in the
same order.

For example, if the third column in the first
query is a date, the third column in the
second query must be a date as well.

* The term “statement” or “select statement” is
sometimes used to designate the queries.

Lesson 19: Creating Union Queries

Overview
1. A union is the combination of results

from two or more queries. If two
queries are combined in a union, the
result is all of the rows from the first
query and all of the rows from the
second query.

2. Duplicate rows are automatically
discarded when parts are connected
in a union. A duplicate row in this
context is based on all fields in the
row. In addition, the results are
automatically sorted by first field,
second field, and so on, but this
order can be overridden if desired.

3. Unions can be used to combine
records that have no fields in
common and to retrieve similar data
from unrelated records in one query.
And this can be done without
creating a Cartesian product.

 64

Lesson 19: Creating Union Queries

Using Literals in Unions
1. To execute properly, the three rules listed

earlier must be followed. The two queries
must have the same number of fields, in the
same order, like to like (field type and length).
The field type must be exact and length
similar.

2. In order to have this necessary equivalence,
use literal expressions as placeholders or as
pieces of text.

3. When a Union is created, it is required that
each SELECT statement have the same
number of fields (the fields don’t have to be
identical). This is where the practice of
applying literals as placeholders comes in
handy.

4. Literals are created on the Expressions Page.
5. Examples of literals:

a. Character: two single quotes with a
space between – ‘ ‘

b. Number: zero - 0
c. A word between two single quotes –

‘Complete’
d. Integer between two single quotes – ‘5’

65

3. Note: You do not have to use fields
of like data type in one statement
(query). That is, you can mix field
data types within each statement as
long as the data types correspond
between the two statements.

4. Keep in mind the following points
when using Unions:
a. The sorting and headings are

established in the first select
statement

b. The table with the largest field
sizes must be chosen as the
top level of the query.

c. You cannot retrieve the long
or short translate description
in a Union

d. Unions are automatically
Distinct

Lesson 19: Creating Union Queries

Steps for Using Literals in Unions
1. Click the Add Expression button on the Expressions page

a. Select Character as the expression
b. Enter 1 (or whatever is appropriate) as the length
c. Enter two single quotes with a space (‘ ‘) as the

expression text
d. Click the OK button.
e. Note: Enclose the literal value between the single

quotes. Change the length according to the text
requirements.

2. Click the Use as Field link to use the expression in the query.
3. The name of the new field is ‘ ‘ (two single quotes).

The basic steps for creating a union query are:
1. Create a query, including selecting the fields and criteria
2. Click the New Union hyperlink at the bottom of the Query Manager

pages
3. Select the record to use in the union
4. Select the same number of fields and the same field types for each field

as in the original query and arrange in the same order
5. Save and Preview the query

66

Lesson 19: Creating Union Queries

Demonstration – Creating Unions That Use Literals

In this demonstration the output will be a listing of students for a given career and term.
Displayed will be their:

o Academic Plan
o Form of Study
o Primary Academic Program
o Academic Org Owner associated with the Academic Plan

• This example uses two queries (statements) that have these three records in common.
They are added to the query in this order:
o STDNT_CAR_TERM
o ACAD_PROG
o ACAD_PLAN

• However, the second query (Union 1) has one additional record that the first query (Top

Level of Query) does not:
o ACAD_PLAN_OWNER

• This is because the first query includes the ACAD_PROG_PRIMARY field of GRNON

(Graduate Non-Degree) as criteria, which has no Academic Plan Owner associated with
it.

67

Lesson 19: Creating Union Queries

Demonstration – Creating Unions That Use Literals

 1. The first query is created
from the three records
listed above; six fields are
selected. Note that the
columns need to be re-
positioned exactly as
shown in order the union
query to work properly.

68

2. The criteria in the first query
should appear as follows;
most of the criteria were
automatically set, except for
the last three rows which
were manually created.

 Note that this is the query
under which the criterion is
set for the
ACAD_PROG_PRIMARY field
to equal GRNON.

Lesson 19: Creating Union Queries

Demonstration – Creating Unions That Use Literals (continued)

 3. This is a sample of output from the first query at this point. Make a note of how many
records are returned for verification after the union query is completed.

69

4. Now it is time to create the union. At the bottom of any page (except the Run page), click
on the New Union link which opens the following page. Note the Subquery/Union
Navigation link in the upper right that enables you to toggle between the Top Level of
Query and Union 1.

(Tip: Once you’re satisfied with the query output, it’s a good idea to save the
query at this point and often during creation.)

Lesson 19: Creating Union Queries

5. The three records (STDNT_CAR_TERM, ACAD_PROG and ACAD_PLAN) that will be the same as
the first query (Top Level of Query) need to be added to the second query (Union 1). And the
way the records are joined to the second query needs to mimic the creation of the first query.

a. Add the record STDNT_CAR_TERM
b. Once you click the record name, the Query page for the Union 1 opens displaying an Alias

of D for STDNT_CAR_TERM

70

Demonstration – Creating Unions That Use Literals (continued)

Lesson 19: Creating Union Queries

c. To Union 1 add the other two records, ACAD_PROG and ACAD_PLAN, using the same
joins as in the Top Level of Query. They will have aliases of E and F. Arrange the fields in
Union 1 so the columns are the same as in the Top Level of Query.

d. Reorder by EMPLID.

6. Now add the record that is not in the first query, ACAD_PLAN_OWNER.
a. Join it on the Auto Join page to the field ACAD_PLAN in the ACAD_PLAN record.
b. On the Query page, select the field ACAD_ORG.
c. The Query page for Union 1 will now have these records:

71

Demonstration – Creating Unions That Use Literals (continued)

Lesson 19: Creating Union Queries

You will note a number of differences on the Query page when you are working with union
queries, some of which are similar to those with subqueries.

• On the upper left, the Working on selection field displays information text to help you
keep track of whether you are working on the Top Level of Query (first query) or
Union 1 (second query).

• As you work with the union query, you can switch between the two queries.
o To navigate between the top level of the query and the Union 1 query, click on the

Subquery/Union Navigation link in the upper right.
o Note: The Subquery/Union Navigation link appears on all pages except the Run page.

7. To continue with the union query, both queries need to be set up with the same number of
fields containing comparable data. The seven field header names for the final output are:

a. Acad Org
b. Acad Plan
c. ID
d. Term
e. Prim Prog
f. Study Form
g. Status

72

Demonstration – Creating Unions That Use Literals (continued)

Lesson 19: Creating Union Queries

8. These fields are identical to those in
the first query, except that the new
field of Acad Org (ACAD_ORG) has been
added. In the second query, re-position
the columns so that the Fields page
now looks like this, in this exact order,
i.e. ACAD_ORG is now the first column:

9. Add the following two criteria
from STDNT_CAR_TERM (Record
Alias D), being sure they are the
same as those in the first query:

a. ACAD_CAREER equal to
GRAD

b. STRM equal to 1139
10. The second query Criteria page

should now appear like the
image to the left.

 73

Demonstration – Creating Unions That Use Literals (continued)

Lesson 19: Creating Union Queries

11. Navigate back to the first query (Top
Level of Query).

a. If you look at the Fields page,
you’ll see that one field needs to
be added to make both queries
have the same output. That
field is ACAD_ORG.

b. Since the first query does not
include the record containing
ACAD_ORG, this is where a
literal placeholder is used.

c. As shown in the section above
entitled Steps for Using Literals
in Unions, create an expression
with a literal placeholder.

d. Make it 10 characters long.
e. Be sure to click on Use as Field

link.

12. The newly created expression is now a
field on the Fields page with a name of
‘ ‘ (two single quotes with a space).
a. Rearrange the columns so that

they are in the same order as the
second query with the new field
as the first column (see below).

b. Change the Heading Text for the
new field to Acad Org.

c. Sort by EMPLID.

74

Demonstration – Creating Unions That Use Literals (continued)

Lesson 19: Creating Union Queries

c. The first query’s Fields page should now look like this:

75

Demonstration – Creating Unions That Use Literals (continued)

d. Contrast with the second query’s Fields page. Compare Row 1.

Lesson 19: Creating Union Queries

13. Save and run the query. Below is a sample of the output for the fields through the Prim Prog
(Primary Academic Program) or ACAD_PROG_PRIMARY field. You will see that those rows
with the Primary Academic Program of GRNON have a blank field under Acad Org.

76

Demonstration – Creating Unions That Use Literals (continued)

As noted in the section on improving query performance, when querying for multiple
values, the UNION operator is one possible method. As mentioned, it is not recommended
because of increased coding complexity

Lesson 20: Supplementary Information

There are documents and links in the
SFIS Blog that relate to the above
topics and other areas related to PS
Query and PeopleSoft in general. Here
is a sampling.
PeopleSoft Query Training:
• PS Query I and II – Introduction
• Part I – Basic Query Concepts and

Query Viewer
• Part II – Query Manager
• Grouping Criteria and Boolean

Expressions
• Annotated Visual Demonstration

of Query Process
• Sample Relational Database

Query Presentations:
• Criteria and Having Pages
• Dates in Query
• Effective Dates in Query
• Expressions and Wesleyan

Functions
• Prompts in Query
Query Tools and References
• Criteria Properties
• Query Manager Pages
• Query to Excel (Pivot Table Intro)
• Records Commonly Used
• Tip Sheet
• Encyclopedia
• Glossary

77

http://sfis.blogs.wesleyan.edu/query/instruction/introduction-to-peoplesoft-query-i-and-ii/
http://sfis.blogs.wesleyan.edu/files/2013/12/Intro-to-PS-Query-Part-1-Overview-and-Viewer.pdf
http://sfis.blogs.wesleyan.edu/files/2013/12/Intro-to-PS-Query-Part-1-Overview-and-Viewer.pdf
http://sfis.blogs.wesleyan.edu/files/2013/12/Intro-to-PS-Query-Part-2-Query-Manager1.pdf
http://sfis.blogs.wesleyan.edu/files/2010/04/Query-Reference-Demo-9-Grouping-Criteria3.pdf
http://sfis.blogs.wesleyan.edu/files/2010/04/Query-Reference-Demo-9-Grouping-Criteria3.pdf
http://sfis.blogs.wesleyan.edu/query/instruction/introduction-to-peoplesoft-query-i-and-ii/e-visual-demonstration/
http://sfis.blogs.wesleyan.edu/query/instruction/introduction-to-peoplesoft-query-i-and-ii/e-visual-demonstration/
http://sfis.blogs.wesleyan.edu/query/instruction/introduction-to-peoplesoft-query-i-and-ii/query-intro-extra/relational-database-example/
http://sfis.blogs.wesleyan.edu/query/query-demonstrations/criteria-and-having/
http://sfis.blogs.wesleyan.edu/query/query-demonstrations/dates-in-query/
http://sfis.blogs.wesleyan.edu/query/query-demonstrations/effective-dates-in-query/
http://sfis.blogs.wesleyan.edu/query/query-demonstrations/expressions-and-wes-functions/
http://sfis.blogs.wesleyan.edu/query/query-demonstrations/expressions-and-wes-functions/
http://sfis.blogs.wesleyan.edu/query/query-demonstrations/prompts-in-query/
http://sfis.blogs.wesleyan.edu/query/wesleyan-tools/criteria-properties/
http://sfis.blogs.wesleyan.edu/query/wesleyan-tools/query-manager-pages/
http://sfis.blogs.wesleyan.edu/query/wesleyan-tools/query-to-excel-pivot-table-intro/
http://sfis.blogs.wesleyan.edu/query/wesleyan-tools/wesleyan-records-commonly-used/
http://sfis.blogs.wesleyan.edu/query/wesleyan-tools/query-tip-sheet/
http://sfis.blogs.wesleyan.edu/query/wesleyan-tools/query-encyclopedia/
http://sfis.blogs.wesleyan.edu/query/wesleyan-tools/test/

	� Student/Faculty Information System
	Student/Faculty Information System�PeopleSoft Query�Part III – Advanced Concepts
	Lesson 11: Improving Query Performance
	Lesson 11: Improving Query Performance
	Lesson 11: Improving Query Performance
	Lesson 11: Improving Query Performance
	Lesson 11: Improving Query Performance
	Lesson 11: Improving Query Performance
	Lesson 11: Improving Query Performance
	Lesson 11: Improving Query Performance
	Lesson 11: Improving Query Performance
	Lesson 11: Improving Query Performance
	Lesson 12: Join Variations�(You may want to review Lesson 7, Mastering Record Joins and Selection Criteria, in Part II)
	Lesson 12: Join Variations
	Lesson 12: Join Variations
	Lesson 12: Join Variations
	Lesson 12: Join Variations
	Lesson 13: Expressions – More Examples�(To review, see Lesson 8: Adding Expressions and Using Functions in Part II) �
	Lesson 13: Expressions – More Examples
	Lesson 13: Expressions – More Examples�Additional Notes on Expressions
	Lesson 13: Expressions – More Examples
	Lesson 13: Expressions – More Examples
	Lesson 13: Expressions – More Examples
	Lesson 13: Expressions – More Examples
	Lesson 13: Expressions – More Examples
	Lesson 13: Expressions – More Examples
	Lesson 13: Expressions – More Examples
	Lesson 13: Expressions – More Examples
	Lesson 14: Wes Functions Review�
	Lesson 14: Wes Functions Review
	Lesson 14: Wes Functions Review
	Lesson 15: Prompts and Table Edits�
	Lesson 15: Prompts and Table Edits
	Lesson 15: Prompts and Table Edits
	Lesson 15: Prompts and Table Edits
	Lesson 15: Prompts and Table Edits
	Lesson 15: Prompts and Table Edits
	Lesson 16: Counts and Sums in Query�(Aggregate Functions and Having Criteria)�
	Lesson 16: Counts and Sums in Query�(Aggregate Functions and Having Criteria)�
	Lesson 16: Counts and Sums in Query�(Aggregate Functions and Having Criteria)
	Lesson 16: Counts and Sums in Query�(Aggregate Functions and Having Criteria)
	Lesson 16: Counts and Sums in Query�(Aggregate Functions and Having Criteria)
	Lesson 16: Counts and Sums in Query�(Aggregate Functions and Having Criteria)
	Lesson 16: Counts and Sums in Query�(Aggregate Functions and Having Criteria)
	Lesson 17: Mastering Outer Joins�
	Lesson 17: Mastering Outer Joins
	Lesson 17: Mastering Outer Joins
	Lesson 17: Mastering Outer Joins
	Lesson 17: Mastering Outer Joins
	Lesson 17: Mastering Outer Joins
	Lesson 17: Mastering Outer Joins
	Lesson 17: Mastering Outer Joins
	Lesson 17: Mastering Outer Joins
	Lesson 17: Mastering Outer Joins
	Lesson 18: Subqueries - Introduction
	Lesson 18: Subqueries - Introduction
	Lesson 18: Subqueries - Introduction
	Lesson 18: Subqueries - Introduction
	Lesson 18: Subqueries - Introduction
	Lesson 18: Subqueries - Introduction
	Lesson 18: Subqueries - Introduction
	Lesson 18: Subqueries - Introduction
	Lesson 18: Subqueries - Introduction
	Lesson 19: Creating Union Queries�
	Lesson 19: Creating Union Queries
	Lesson 19: Creating Union Queries
	Lesson 19: Creating Union Queries
	Lesson 19: Creating Union Queries
	Lesson 19: Creating Union Queries
	Lesson 19: Creating Union Queries
	Lesson 19: Creating Union Queries
	Lesson 19: Creating Union Queries
	Lesson 19: Creating Union Queries
	Lesson 19: Creating Union Queries
	Lesson 19: Creating Union Queries
	Lesson 19: Creating Union Queries
	Lesson 20: Supplementary Information

