Expressions in Query:
An In-Depth Exploration
Into Function Statements

Session #23398 (S1)
March 11, 2007

(8:30 AM — 11:30 AM)

Alllance 2007 Conference
Orlando, Florida

Presenters

Uriel Hernandez

Information Technology Applications
Specialist
Central Washington University

Tim McGuire

Information Technology Applications
Specialist
Central Washington University

Overview

e Review In detail both common function
statements and complex expressions.

e EXplore the many possibilities of using
function statements to provide greater
flexibility, functionality and power to
your gueries.

e Discover creative ways to overcome
many of the limitations of the PS Query
Tool for improved reporting use.

Agenda Topics

e Exploring Functions

e Methodology for Finding Solutions
 Break

e Exploring Further

e Hands-On Problem Solving

e Resources

cQ&A

CWU Trivia

Main Campus

e Located in Ellensburg, WA
e 7. 754 full-time students
e 8,225 in attendance

Off-site Centers

e Six satellite centers

e 3 each in Eastern and Western, WA
e 1.246 full-time students

1,734 in attendance

PeopleSoft HRSA at CWU

eVersion: PeopleSoft 8.0 SP1

e PeopleTools: 8.22.12

e Database: Oracle 10g

e ive Date: September 2004

e Self-Service Name: Safari

e Currently upgrading to HCMCS 8.9
 Projected Go-Live: October 2007

Ground Rules

e Interactive - Participation Required
e Understanding of Query Tool

e Correct Joins and Criteria Needed

e Not Table Specific

e System Independent
e Just Options

e ldeas Welcome

SQL FUNCTIONS=

*Command Set for Oracle 9i/10g Databases

What are functions?

Functions are special types of command
words In the SQL command set, usually
one-word commands which manipulate
data items and return a single value
which can be determined by various input
parameters.

Function Groups

There are two groups of functions:

 Deterministic + -,
 Nondeterministic

So, what does that
really mean!?!?

Functions Groups (continued)

Deterministic functions always return the
same result

» When having specific set of input values with
the same state of database

Nondeterministic functions may return
different results

» Even with specific set of input values and
same state of database

Function Statements - Review

Function Statements are predefined
system commands expressed with their
operational parameters.

Function Statements - Example

JUMP
How High? = 24 Inches
How Long? = 120 seconds
Who? = Mickey

JUMP(‘Mickey’,24,120)

Questions?

Function Categories

Oracle identifies six different categories of
functions:

e Aggregate

e Single-row
 Analytic

e Object Reference
e Model Function

e User Defined

Our focus will be on Aggregate, Single-row, and
Analytic functions.

AGGREGATE FUNCTIONS

Aggregate Functions

Operate against a collection of values, but return
a single, summarizing value.

AVG - computes the average of values in a column or
an expression

SUM - computes the sum (both AVG and SUM work with
numeric values and ignore NULL values)

COUNT - counts all rows defined in an expression

MIN - identifies the minimum value in a column by the
expression

MAX - finds the maximum value in a column by the
expression

Aggregate and Single-row Functions

The number of values an aggregate
function processes may vary, depending
on the number of rows queried from the
table.

This unique process makes aggregate
functions different from single-row
functions, which require a fixed number
and fixed type of parameters .

Aggregate and Single-row Functions

Aggregate and Single-row functions
complement each other. They both can be

used in the following:

e SELECT statement (in the select list)
e WHERE clauses

e HAVING clauses f

SINGLE-ROW FUNCTIONS

Single-row Functions

e Operate on a single value and then
return a single value.

e They can be used wherever an
expression is valid.

e They can be divided into different logical
categories.

Single-row Functions - Types

The different types of Single-row
functions are:

) |
e Numeric {

e String/Character ﬁ u
e Conversion fﬁ \ e
e Date and Time - .

\oo/

e Advanced

Questions?

Numeric Functions - CEIL/FLOOR

Numeric: performs operations on numeric values
and returns numeric values, accurate to 38

decimal points

e CEIL - returns the smallest integer value that is greater
than or equal to a number

— ceil(number)
e ceil(21.3) =22
e ceil(15.9) = 16
e ceil(-8.9) = -8

e FLOOR - returns the largest integer value that is equal
to or less than a number

— floor(number)
e floor(21.6) =21
e floor(15.9) = 15
e floor(-8.9) = -9

Numeric Functions - MOD/REMAINDER

e MOD - returns the remainder of m divided by n (and
returns mif nis 0)
— mod(m,n)
e Two functions for the price of one (uses FLOOR functionality)

e Second function applied when dealing with decimals
e See REMAINDER

e« REMAINDER - returns the remainder of m divided by n
— remainder(m,n)
e New 10g function
e Two functions for the price of one (uses ROUND functionality)
e remainder(16,3) =1
e remainder(16,6) =4
e remainder(16,0) = 16
e remainder(-16,3) = -1

Presenter
Presentation Notes
Two functions that do the same thing, to a degree…
mod(11.6,2) = 1.6 (whole numbers only - 2 goes into 11.6 five times (10), so 11.6 – 10 = 1.6)
mod(11.6,2.1) = 1.1 (2.1 goes into 11.6 five times (10.5), so 11.6 – 10.5 = 1.1)

Numeric Functions - ROUND/TRUNC

e ROUND - returns a number rounded to a certain
number of decimal points

— round(number,[decimal places])

 number is the number to round and decimal_places is the
number of places rounded to (if omitted, default is 0)

e round(123.456) = 123
e round(123.456,1) = 123.5
e round(123.456,2) = 123.46

e TRUNC - returns a number truncated to a certain
number of decimal points

— trunc(number,[decimal places])

 number is the number to round and decimal_places is the
number of places rounded to (if omitted, default is 0)

e trunc(123.456,1) = 123.4

e trunc(123.456,-1) = 120

Presenter
Presentation Notes
Use with numeric datatype fields

Questions?

String Functions - CONCAT

String (also referred to as Character): perform
operations on a string (char/varchar) input value
and return a string or numeric value

e CONCAT - appends two or more literal expressions,
column values or variables together into one string
— (stringl | | string2 | | string_n) or concat(stringl,string2)
e A.FIRST_NAME || A.LAST_NAME = MickeyMouse
e A.FIRST_NAME |] "' 1] A.LAST_NAME = Mickey Mouse

e ‘NAME:'| |A.FIRST_NAME || CASE WHEN LENGTH
(A.MIDDLE_NAME) = 1 AND A.MIDDLE_NAME <> ''THEN "'

|| AMIDDLE_NAME || '." WHEN LENGTH (A.MIDDLE_NAME)
>1 THEN "' || A.MIDDLE_NAME ELSE "END || "' |1
A.LAST NAME || " || CASE WHEN A.NAME_SUFFIX <> ""

AND A.NAME_SUFFIX NOT LIKE 'l ' THEN A.NAME_SUFFIX | 1|
"." ELSE A.NAME_SUFFIX END

Presenter
Presentation Notes
|| is the function symbol for concatenate (concatenation operator)

String Functions - INITCAP/INSTR

e INITCAP - converts a string to initial capital letters
— initcap(stringl)
e initcap(‘mickey mouse’) = Mickey Mouse
e initcap("MINNIE MOUSE’) = Minnie Mouse

e INSTR - returns the location of a substring in a string

— instr(stringl,string2,[start_position],[nth_appearance])

e stringl is the string to search and stringZ2 is the substring to
search for in stringl

e Start_position is the position in stringl where the search
begins (if omitted, default is 1 - first position in string) and

nth_appearance is the nth appearance of string2 (if omitted,
default is 1)

e instr(*Mickey’,‘'c’) = 3 (first occurrence of the letter c, as in “C
you real soon...”)

e instr(*Mickey Mousey’,'y’,1,2) = 13 (second occurrence of the
letter Y, as in, “Y, because we like you...”)

Presenter
Presentation Notes
Mickey Mouse Alma Mater closing…M-I-C, see you real soon, K-E-Y, why? Because we like you, M-O-U-S-E.

String Functions - LOWER/REPLACE

e LOWER - converts a string to all lowercase characters
— lower(stringl)
e Similar to /nitcap but focusing on the entire string

e lower(*‘Mickey Mouse’) = mickey mouse
e lower("MINNIE MOUSE’) = minnie mouse

e REPLACE - replaces a sequence of characters in a
string with another set of characters

— replace(stringl,string_to_replace,[replacement_string])

e stringl is the string being affected and string_to_replace is
the string which will be searched for in string1

e replacement_string is optional (if omitted, the replace
function removes all occurrences of string_to_replace and
returns the resulting string)

e replace(‘Mickey the Rat’,'Rat’,'Mouse’) = Mickey the Mouse

String Functions - SOUNDEX/XLAT

e SOUNDEX - returns a string containing the phonetic
representation (the way it sounds) of the string
— soundex(stringl)

e Allows for the comparison of words that are spelled
differently, but sound alike in English

e soundex(‘Jon’) = John, Jon, Jean-Pierre, Jonny, Johnnie
e soundex(A.FIRST_NAME) = soundex(‘John’)

e TRANSLATE - converts a string from one character set
to another

— translate(stringl,string_to_replace,[replacement_string])

e stringl is the string being affected and string_to_replace is
the string which will be searched for in stringl

e All characters in the string_to_replace will be replaced with
the corresponding character in the replacement_string

e Similar to REPLACE, except TRANSLATE provides single-char,
one-to-one substitution instead of string substitutions

e translate(‘Foggy’,'Fgg’,'Gof’) = Goofy

Presenter
Presentation Notes
Thanks to Dr. Donald E Knuth, a brilliant computer programmer (Stanford University), for “The Art of Computer Programming, Volume 3: Sorting and Searching” for his numeric definition of phonetic representation (his mind boggling formula assigning numbers to letters (consonants) after removing corresponding vowels and h, w and y)

String Functions - TRIM/UPPER

e TRIM - removes leading characters, trailing characters
or both from a character string

— trim([leading | trailing | both[trim_character]]stringl)
e leading removes trim_string from front of stringl
e trailing removes trim_string from end of stringl
* both removes trim_string from front and end of stringl
e trim(leading ‘$’ from ‘$123.45") = 123.45
e trim(trailing ‘.’ from ‘Mr.”) = Mr
e trim(both ‘.’ from ‘Mr. Jones Jr.”) = Mr. Jones Jr

e UPPER - converts a string to all uppercase characters
— upper(stringl)
e upper(‘Mickey Mouse’) = MICKEY MOUSE
e upper(‘minnie mouse’) = MINNIE MOUSE

Presenter
Presentation Notes
Notice with trim(both ‘.’ from ‘Mr. Jones Jr.’) only removed the trailing period, because the first period encountered was in the middle of the string.

String Functions - LENGTH

e LENGTH — returns the number of a characters
In a string or field.

— LENGTH(char)

e It returns a Number.
e It counts all characters including trailing blanks.

— LENGTH(*Mickey Mouse’) = 12
— LENGTH(A.EMPLID) = 8

String Functions - SUBSTR

e SUBSTR — extracts a portion of a string or field.

— SUBSTR(char, position [, substring_length])

e position is the Starting Position.

e If position is O, then it is treated as 1.

e |If position is positive, then the count starts from the
beginning.

e |If position is negative, then it starts from the end and counts
backward.

e substring length is the number of characters to extract

— SUBSTR('ABCDEFG’,3,4) = CDEF
— SUBSTR('ABCDEFG',-5,3) = CDE

Questions?

Conversion Functions

Conversion: Change or convert values from one
data type to another (character to numeric,
numeric to character, character to date or date
to character)

Note: There are two things you should notice regarding the
differences between numeric data types and character string

types:

1. Arithmetic expressions and functions can be used
on numeric values.

2. Numeric values are right-justified, whereas
character string data types are left-justified in
the output result.

Conversion Functions (continued)

e TO_ CHAR - converts a number or date to a string

— to_char(value,[format_mask])
e value is either a number or date that will be converted to a string
e format_mask is the format used to convert the value to a string
to_char(1234.567, '9999.9') = 1234.5
to _char(1234.567, '9,999.99") = 1,234.56
to_char(1234.56, '$9,999.00") = $1,234.56
to_char(23, '000099") = 000023
to_char(sysdate, 'yyyy/mm/dd') = 2007/03/11
to_char(sysdate, ‘Month DD, YYYY') = March 11, 2007

e TO_DATE - converts a string to a date

— to_date(stringl,[format_mask])
e stringl is the string that will be converted to a date

e format_mask is the format that will be used to convert stringl to
a date

- to_date(‘39152','MMDDYY") = 03/11/07

Presenter
Presentation Notes
Field data type conversions

Questions?

Date and Time Functions

Date and Time: Perform operations on a date and
time Input values and return string, numeric, or
date and time values

e SYSDATE - returns the current system date and time on
your local database

— sysdate
e Let’'s use March 11, 2007 (03-11-07)
e to char(sysdate - 30, ‘MM-DD-YY’) = 02-09-07

e« ADD_MONTHS - returns a date plus 7 months
— add_months(datel,n)
e add_months(‘11-Mar-07’,3) = 11-Jun-07
e add_months(‘11-Mar-07’,-3) = 11-Dec-06

Presenter
Presentation Notes
Last sysdate example uses both conversion and date/time function

Date and Time Functions — monTHS BETWEEN

e MONTHS BETWEEN - returns number of
months between two dates.

- MONTHS_BETWEEN(date1, date2)

If today's date = March 05, 2007 then

MONTHS_BETWEEN('12-MAR-09', SYSDATE)

= 24.203837365

Date and Time Functions — NEXT DAY

e NEXT_ DAY - returns the date of the first
weekday named that is later than the date
specified.

e NEXT_DAY(date, char)

I e
Career| Term| Short Desc | Term Begin Date| The Next Tuesday
UGRD [1071 [win 2007

73 | Spr 200 03/27/2007

05./18/2007 05./19/2007
3 |Spr 2008 03/25/2003 04./01/2003
: : 06/25/2003 07/01/2003

1089 |Fall 2003 09/25/2008 03/30/2002

TO_CHAR(NEXT DAY(TO_DATE((A.TERM_BEGIN_DT),
'YYYY-MM-DD'), TUESDAY"), 'YYYY-MM-DD')

Questions?

Advanced Functions

Only for the brave and adventurous
PeopleSoft query writers; functions to
stimulate your creative/analytical mind:

« GREATEST / LEAST >
e NVL / NVL2 ﬂg,
« ROWNUM "

« COALESCE *

« DECODE -

*CASE

Advanced Functions - GREATEST/LEAST

e GREATEST - returns the greatest from a list
of one or more expressions.

— GREATEST (expr [, expr]...)

e LEAST - returns the least from a list of
expressions.

— LEAST (expr [, expr]...)

(The first expr will determine the data type that is returned.)

Presenter
Presentation Notes
Compare multiple Terms (brought in more than once, Different Types (Admit Term, Grad Term)
Compare Cum GPA vs Term GPA
Payments

Advanced Functions - NVL/NVL2

e NVL - allows substitution of a value when a null value
IS encountered.
— NVL(stringl, replace_with)
e stringl is the string to be tested for a null value and
replace_with is the value returned if stringl is null

e NVL(course gpa,‘Grade Pending’)

— if course_gpa is null then Grade Pending is returned otherwise
course_gpa value is returned

e NVLZ2 - allows the substitution of a value when a null
value iIs encountered, as well as when a non-null value
IS encountered.

— NVL2(stringl, value_if not_null, value if null)
e stringl is the string to be tested for a null value

e value if_not_null is the value returned if stringl is not null
and value_if_null is the value returned is stringl is null

e NVL2(FERPA,'Do Not Disclose’,Disclose’)

(NVL2 extends the functionality of NVL by letting you determine the value
returned based on whether something is null or not null.)

Presenter
Presentation Notes
NVL – instead of being blank – “Grade Pending”
NVL2 – privacy – “Graded”, “Not Graded”

Advanced Functions — ROWNUM 1)

« ROWNUM - assigns a number indicating
the order In which each row Is returned

‘ by a query.

ROWNUM | ID |Career Career Nbr| Term| Prim Prog| Take Prars| GPA | GPA
1 22333 UGRD n 1IIIEEI LIG 14 nnn 2 964 2 964

m—nmmmm

Advanced Functions — ROWNUM 2

Query Tip # 1.
LIMIT NUMBER OF ROWS RETURNED

ROWNUM <= 100

25 PrvaTE.QUERY. | | Fields | Crteria | SBL | Resuits |
) 4 = STONT_CAF

E"'Ez E upressions m Expression 2

E BOwWHLM ASTRM - Temn equal to
.-'1'-.ND RO LIk mot greater than B3 1EI

L Fr mpks

Do not use Equal to (=) or Greater Than (>).

* |If an ORDER BY clause follows ROWNUM in the same query, then
the rows will be reordered by the ORDER BY clause.

Advanced Functions (continued)

The next three functions have similar functionality,
yet each subsequent function is more powerful
then the previous one.

« COALESCE
«DECODE
e CASE

e All three perform ‘IF-THEN’ operations

Advanced Functions - COALESCE

e COALESCE - returns the first non-null expression in the
list (if all expressions evaluate to null, then the

coalesce function will return null)
— coalesce(exprl, expr2, ..., expr_n)
e ‘IF-THEN’ functionality
e coalesce(mickey,minnie,goofy)
— IF mickey exists (not null) THEN result = mickey;
— ELSIF minnie exists (not null) THEN result = minnie;
— ELSIF goofy exists (not null) THEN result = goofy;
— ELSE result = null;
— END IF
e The coalesce function compares each value one by one

Presenter
Presentation Notes
COALESCE function is a generalization of the NVL function.
Many “Empty” fields in PS are not NULL – they have a space.

Advanced Functions - DECODE

e DECODE - performs the functionality of an ‘IF-THEN-
ELSE’ statement, also comparing each value , one by
one, but now with specific search criteria

— decode(expression, search, result[, search, result]...[,

default])

e expression is the value to compare, search is the value that is
compared to expression and resul/t is the value returned, if
expression equals search

e defaultis optional, if no matches are found decode returns
the default value (unless omitted, then statement returns
null)

— decode(char_id,01,‘Mickey’,02,‘Minnie’,03,‘Goofy’,'Donald’)
— IF char_id = 01 THEN result = Mickey;

— ELSIF char_id = 02 THEN result = Minnie;

— ELSIF char_id = 03 THEN result = Goofy;

— ELSE result = Donald,;

— END IF

Presenter
Presentation Notes
DECODE is ORACLE specific and it is limited to single positive conditions.

Advanced Functions - CASE

e CASE - performs the functionality of an “IF-
THEN-ELSE” statement with greater possibilities.

— CASE expression
e WHEN condition_1 THEN result_1
e WHEN condition_2 THEN result_2
e WHEN condition_n THEN result_n
e ELSE result END

Presenter
Presentation Notes
This is the syntax the “Simple Case Expression” format.

Advanced Functions — CASE

IF THEN ELSE

CASE WHEN THEN ELSE END

e CASE expressions are ANSI-standard.
e CASE was introduced in Oracle8i and enhanced in Oracle9i.
e CASE is part of the SQL standard, whereas DECODE is not.

e Thus, the use of CASE is preferable.

Advanced Functions — CASE 2

CASE WHEN THEN ELSE END

CASE WHEN B.FERPA ="Y"
THEN 'FERPA - DO NOT DISCLOSE'

ELSE "
=\ID)

CASE WHEN B.FERPA = "Y' THEN 'FERPA - DO NOT
DISCLOSE' ELSE " END

Presenter
Presentation Notes
This is the syntax the “Searched Case Expression” format.
This seems to work more consistently within the PS Query Tool.

Advanced Functions — CASE (3

CASE, LENGTH, SUBSTR, ||, TRIM
Zip Code Plus 4

CASE WHEN (B.COUNTRY = 'USA' AND
LENGTH(TRIM(B.POSTAL)) = 9)
THEN SUBSTR(B.POSTAL,1,5) || - ||
SUBSTR(B.POSTAL,6,4)
ELSE TRIM(B.POSTAL)

END
Before After
989267405 08926-7405
98020 98020

98948-3722 98948-3722

Advanced Functions — CASE

CASE WHEN THEN ELSE END

Nested

CASE WHEN (SUM(C.UNT_TRNSFR * C.GRD_PTS_PER_UNIT) /
SUM(C.UNT_TRNSFR)) IS NULL THEN A.CUM_GPA ELSE (CASE
WHEN SUM(C.UNT_TRNSFR) IS NOT NULL OR A.TOT_TAKEN_ GPA
IS NOT NULL THEN (CASE WHEN SUM(C.GRD_PTS_PER_UNIT *
C.UNT_TRNSFR) IS NULL THEN A.TOT_GRADE_POINTS ELSE
SUM(C.GRD_PTS_PER_UNIT * C.UNT_TRNSFR) +

A.TOT _GRADE_POINTS END / CASE WHEN SUM(C.UNT_TRNSFR)
IS NULL THEN A.TOT_TAKEN_GPA ELSE SUM(C.UNT_TRNSFR) +
A.TOT TAKEN_ GPA END) ELSE 0 END) END

Advanced Functions — CASE ()

CASE WHEN (SUM(C.UNT_TRNSFR * C.GRD_PTS_PER_UNIT) /
SUM(C.UNT_TRNSFR)) IS NULL
THEN A.CUM_GPA
ELSE (CASE WHEN SUM(C.UNT_TRNSFR) IS NOT NULL OR
A.TOT_TAKEN_GPA IS NOT NULL
THEN (CASE WHEN SUM(C.GRD_PTS_PER_UNIT *
C.UNT_TRNSFR) IS NULL
THEN A.TOT_GRADE_POINTS
ELSE SUM(C.GRD_PTS_PER_UNIT *
C.UNT_TRNSFR) + A.TOT_GRADE_POINTS
END / CASE WHEN SUM(C.UNT_TRNSFR) IS NULL
THEN A.TOT_TAKEN_GPA
ELSE SUM(C.UNT_TRNSFR) +
A.TOT_TAKEN_GPA
END)
ELSE O
END)

END

Advanced Functions — CASE ()

Notes:

e Oracle Database uses short-circuit evaluation, so place the MOST
restrictive condition FIRST.

e (Case expressions enable use of full mathematic & SQL logic.
(=, <>, >, <, +,-,* /, AND, OR, IN, BETWEEN, etc.)

e The maximum number of arguments in a CASE expression is 255,
and each WHEN ... THEN pair counts as two arguments. To avoid
exceeding the limit of 128 choices, you can nest CASE

expressions.

CASE WHEN THEN ELSE END

Questions?

ANALYTIC FUNCTIONS

Analytic Functions — Definition

e Analytic functions compute an aggregate
value based on a group of rows.

» They differ from aggregate functions in that they return
multiple rows for each group.

=The group of rows is called a window.

= Analytic functions are the last set of operations performed in a
qguery except for the final ORDER BY clause. All joins and all
WHERE, GROUP BY, and HAVING clauses are completed before
the analytic functions are processed.

= Analytic functions are commonly used to compute cumulative,
moving, centered, and reporting aggregates.

=Calculations are independent of output.

Analytic Functions — Syntax

Partition Statement Syntax

Analytic Functions — COUNT

COUNT (A.EMPLID) OVER (PARTITION BY A.STRM)

ID___|Caree Stit Level | Take Prgrs| Tem| _Count per Term |-

S 1o N I]) © ~UInction operation
261 |UGRD (30 | Gooo[oss [sor i

T N —— 1 a—| 0 O'OUPING happens
Z N (VT R 1 [=EH | o fter all query criteria
i UGRD 10 9.000 1051 H40

1378 UGRD 10 0.000 1053 &O7 have been met.

rara UGRD 10 0000 1056 473

rara UGRD 10 0.000 1053 754

e Calculation is

612 [UGRD 30 | 13000 .

I (1T; N R S 111 =< e | (e pendent of output.
612 [UGRD 30 | 12000

3000
530 |UGRD (10 [15.000(/1059
T N I N — | |C ValU€ repeats
ats UGRD (30 | 18.000(1053 I
107 (2RI fObY WL e
24.000 group/partition.

Analytic Functions — Change Group

COUNT (A.EMPLID) OVER (PARTITION BY A.STRM)

COUNT (A.EMPLID) OVER (PARTITION BY A.ACAD_LEVEL_BOT)
ID___ |Career| Stit Level | Take Prars| Term| Count per Term

OGRD [30 | 0000/1051 [540 (907
261 JUGRD 30 9000|1053 |507 307
261 [UGRD [30 | 4000 307
261 UGRD (30 | 500001088 |7/54 807
1378 UGRD 10 9.000 1051 540 ah3
1378 UGRD 10 0.000 1053 507 ah3
1378 UGRD 10 0.000 1056 473 ah3
1378 UGRD 10 0.000 1053 754 ah3
-
£12 13.000 307
£12 UGRD 13.000 RO7 07

12.000 07
13.000 ;
754

Rows Fetched = 2280

I:I=_| I:I=_| I:I=_|
| —t| —t
| =2 | =0
_| =
IR,
a1

Analytic Functions — Dijstinct

COUNT (A.EMPLID) OVER (PARTITION BY A.STRM)
COUNT (A.EMPLID) OVER (PARTITION BY A.ACAD_LEVEL_BOT)

COUNT (DISTINCT A.EMPLID) OVER (PARTITION BY A.ACAD_LEVEL_BQOT)
IE- Count per Term

_ 3%
Y378 HGRD 10 9.000 1051 540] = 411
¥ara IGRD 10 0.000 1053 Ray AE3 411
¥ara IGRD 10 0.000 1056 479 AE3 411
33?"8 LIGFID 'IEI DDDD 1EIEE| ?54] = 411

— 3%
563

Analytic Functions — multiple Groups

COUNT (A.EMPLID) OVER (PARTITION BY A.ACAD_LEVEL_BOT)
COUNT (DISTINCT A.EMPLID) OVER (PARTITION BY A.ACAD_LEVEL_BOT)

COUNT (DISTINCT A.EMPLID) OVER

(PARTITION BY A.ACAD_LEVEL_BOT, A.STRM)

Im Count per Term Distinct Count per Grade| Distinct # in Grade per Term

137a
137a
137a
3'3?"8

yall]

mm_ 245
m —_
LIGFID 10 ElI]I]I] 'IEIE'I 54I:I 553 411

UGRD 10 1.000 1053 ROF hE3 411

UGRD 10 1.000 1058 479 hE3 411

LIGFID 'IEI EIEIEIEI 'II:IEEl ?'54 hE3 411

411
N E— 5
UGRD [30
UGRD [30

UERD |10 15.00 II-I 'III':-I _":4

Fows Fetched = 2280

Presenter
Presentation Notes
For every change of Academic Level and Term.

Analytic Functions — SUM

Total Credits by ID

SUM (A.UNT_TAKEN_PRGRSS) OVER (PARTITION BY A.EMPLID)
|ID___ [Career] Stit Level | Take Prgrs| Term|__ Total Units per ID__|

UGRD (30 | 0000[1051 15,000

UGRD |30 | 9.000/1053 18.000

UGRD |30 | 4.000 18.000
: UGRD (20 | 5.000/1053 15,000
2378 UGRD 10 3.000 1057 3.000
2378 UGRD 10 0.000 1053 4.000
2378 UGRD 10 0.000 1056 3.000
2378 UGRD 10 0.000 1053 3.000

15.000 15.000
UGRD (30 | 12.000
UGRD |30 | 13.000
UGRD (30 | t2000[10s6 | &(.000)
UGRD 13,000
UGRD

Analytic Functions — Query Tip #2

Group by a Constant

COUNT (A.EMPLID) OVER ()

COUNT (DISTINCT A.EMPLID) OVER ()

D |Career] Stit Level | Take Prgis| Term|_Total Rows in Query | Distinct ID Count _
261 (UGRD (30 | oow[i0s, [280 s
51 |UGRD (30 | som[ios 20 Jsts
o5t |UGRD (30 | som[ios [280 a3
oe1 (UGRD (30 | Somo[ioss (280 [ss

378 UGRD 10 3.000 1051 2250 =L X
378 UGRD 10 0.000 1053 2280 343
378 UGRD 10 0.000 1056 2280 943
1378 UGRD 10 0.000 1053 2230 943

443 |UGRD (10 | 1som0[1058 (280 a3
UGRD [20 | faooofiost [2280 fss
UGRD 30| faomoftos [22e0 sz
512 [UGRD [30 | f2000[10% [280 [s;3 |
UGRD 13000[1089 2280 Ja&s |
630 [UGRD [10 | fsom[i0sa [280 a3

7R UGRD [30 | 15000[1051 [2280 943

Analytic Functions — Query Tip #3

Count Multiple ID’s

COUNT (A.EMPLID) OVER (PARTITION BY A.EMPLID)

I]_
261 [UGRD (30 [O000[0sl s [¢
261 |UGRD 30 | 9000[1053 %43 4
251 |HGAD 40001056 %43 0 4 0
UGRD _—
LUGRD 10 3.000 1057 343
LUGRD 10 0.000 1053 343 4
UGRD 10 0.000 1056 343 4
UGRD 10 0.000 1EIEE| 943
GRD 110 15.000|1 —
N S
13.000
12.000 943 4
512 13000 1T S
S5 JUGhD 1053 R
ﬁmmﬂiﬁl_

443
E12
E12

'B12

GLSLELEI [
R R sl 7 =
oo 0O oo o

___I_
__:D:El
))

=&

II

T
o=

-I'I

Rows Fetched = 2280

Analytic Functions — ORDER BY

PERCEN] RANK(OABNVERI(PARTIZIONBY LEVEL BOT
MRATGAD BYENWELUBOTFORDERBY A.CUM_GPA DESC)
I]_-EE_

%27).

55— kD (10

m_ﬁ—”
121 [UGRD (20 | am0o [op
MDE—”
408 |UGRD 20 |
TN —
13 |UGRD [20 |

(PERCENT_RANK () OVER (PARTITION BY
A.ACAD_ LEVEL BOT ORDER BY A.CUM_GPA DESC)) * 100

Analytic Functions — Syntax Review

..... (.....) OVER (PARTITION BY ORDER BY DESC)

ASC | DESC Specify the ordering sequence (ascending or descending).
ASC is the default.

..... (.....) OVER (PARTITION BY ORDER BY DESC NULLS LAST)

NULLS LAST is the default for ascending order.
NULLS FIRST is the default for descending order.

Analytic Functions - RANK

e RANK - calculates the rank of a value In a
group of values.

— RANK() OVER ([query_partition_clause] order_by_clause)

— Returns the rank as a NUMBER.

— RANK computes the rank of each row returned from a query
with respect to the other rows returned in the group.

— Rows with equal values for the ranking criteria receive the
same rank.

Analytic Functions — DENSE_RANK

e DENSE_RANK - computes the rank of a
row In an ordered group of rows.

— DENSE_RANK() OVER([query_partition_clause]
order_by_clause)

— Returns the rank as a NUMBER.
— The ranks are consecutive integers beginning with 1.
— Rank values are not skipped in the event of ties.

— Rows with equal values for the ranking criteria receive the
same rank.

Analytic Functions - PERCENT _RANK

e PERCENT_RANK - calculates the rank of rminus
1, divided by 1 less than the number of rows
being evaluated (the entire query result set or a
partition).

— PERCENT_RANK() OVER ([query_partition_clause]
order_by_clause)

— The return value is a NUMBER.

— The range of values returned by PERCENT_RANKis O to 1,
inclusive.

— The first row in any set has a PERCENT_RANK of 0.

Analytic Functions — LAG /| LEAD

e LAG | LEAD - provide access to more than one row of a
table at the same time without a self join.

Given a series of rows returned from a query and a position
of the cursor, (LAG]LEAD) provides access to a row at a
given physical offset (prior | beyond) that position.

— LAG(value_expr [, offset] [, default]) OVER ([query_partition_clause]
order_by_clause)

— If you do not specify offset, then its default is 1.

— The optional default value is returned if the offset goes beyond the
scope of the window.

— If you do not specify default, then its default is null.

Analytic Functions — LAG / LEAD 2

Compare Address Changes l
Iﬁlmm-

1|:u:|11 g & |[APDO 37, Calle Del Pilor #38 [MO CHANGE Tod
1_'. i, "'l:u:l :' _ 1939 Mara Springs Court MO CHAMGE Hen
1EID1 1 El?' MﬂIL 034011363 1804 Abel PI MO CHAMGE Eller
1007787 MalL 0EA14/2004 f—x 2437 Wheaton Drive 1804 Abel P Eller
10077187 MalL 0504/ 2005 2437 M. wWheaton CT 2437 Wheaton Drive Eller

10071 204] bl 0g/ |_|1 /200 I' _ 114 F.e.:. [Ir MO CHAMNGE Zillal

1001222 MAIL 72004 & 107 NO CHANGE

10071 322 08/13/1375 05 H EIIu.ntt MO CHAMGE

LAG(A.ADDRESS], 1, 'NO CHANGE') OVER
(PARTITION BY A.EMPLID ORDER BY A.EFFDT)

Analytic Functions - NT/ILE

e NTILE - divides an ordered data set into the
number of buckets as indicated and assigns the
appropriate bucket number to each row.

— NTILE(expr) OVER ([query_partition_clause] order_by_clause)

— Used to evenly distribute a group into subgroups.
— The return value is a NUMBER.
— The number of rows in the buckets can differ by at most 1.

— The remainder values are distributed one for each bucket,
starting with bucket 1.

« NTILE(6) OVER (ORDER BY A.LAST_NAME)

Presenter
Presentation Notes
Distributing Students to advisers
Dividing students into Orientation sessions.

Analytic Functions — Row_NUMBER

e« ROW_NUMBER - assigns a uniqgue number to each row
within a group in the ordered sequence of rows
specified in the order-by-clause

— ROW_NUMBER() OVER ([query_partition_clause]
order_by clause)

e Can perform TOP-N query functionality.

e Itis similar to ROWNUM in that it numbers the output rows,
although ROWNUM is one unbroken sequence over the whole
rowset, and ROW_NUMBER resets back to one for each
partition defined within the set.

« ROW_NUMBER() OVER (PARTITION BY A.ACAD_LEVEL_BOT
ORDER BY A.UNT_TAKEN_PRGRSS DESC)

Presenter
Presentation Notes
ROW_NUMBER is similar to ROWNUM but works in a Analytic Function grouping instead of a Single-Row.
Also, not to be confused with ROWID.

Analytic Functions - row_NUMBER 2

Providing Top-N functionality by combining
ROW_NUMBER with ROWNUM:

ID career Term Strt Level Take Prors Maost Units Taken
AAO01 4 UGRD 0350 20 16.000/1

13.000(2

| 1oooof3

§.500(4

3.000|5

20 [sooofio
SELECT A.EMPLID, A ACAD_CAREER, A.STRM, A. ACAD LEVEL_ BOT,
A.UNT_TAKEN_ PRGRSS, ROW_NUMBER() OVER (ORDER
BY A.UNT_TAKEN_PRGRSS DESC) FROM PS_STDNT_CAR_TERM A
WHERE A.INSTITUTION ="'"PSUNV' AND A.STRM = '0350'
AND ROWNUM <="'10"

Presenter
Presentation Notes
ROW_NUMBER is similar to ROWNUM but works in a Analytic Function grouping instead of a Single-Row.
Also, not to be confused with ROWID.

Analytic Functions - RAT/IO_TO _REPORT

RATIO_TO REPORT - calculates the ratio of a value to
the sum of a set of values

— ratio_to_report(expr) over ([query partition clause]) /f
expris null, then ratio_to_report value is null as well
e value set is determined by the query partition clause (if the

query partition clause is omitted, ratio-to-report is calculated
over all returned rows)

= In this example, we’ll calculate the value of each employee’s
hours spent on greeting visitors (by each employee) as
compared to the total hours spent by all employees

— SQL statement syntax:
— Select employee_name, hours, ratio_to_report(hours) over ()

EMPLOYEE HOURS RATIO_TO_REPORT
Mickey 20 0.166666667
Minnie 50 0.416666667
Goofy 10 0.083333333

Donald 40 0.333333333

Presenter
Presentation Notes
Analytic functions cannot be nested.
Cannot use RATIO_TO_REPORT or any other analytic function for expr
120 total hours spent greeting visitors by 4 employees

Questions?

THE POWER COMBO

Power Combo - Introduction

CASE WHEN (..... (.....) OVER (PARTITION BY))
> 0 THEN ELSE END

..... (CASE WHEN THEN ELSE END)
OVER (PARTITION BY)

Power Combo - Example

Total Credits per Person

SUM (B.UNT_PRGRSS) OVER (PARTITION BY A.EMPLID)

Total Credits per Person as of Date

SUM (CASE WHEN B.ENRL_ADD_ DT <= :2 THEN B.UNT_PRGRSS
END) OVER (PARTITION BY A.EMPLID)

Power Combo — Example Continued

Enrollment Status as of Date

CASE WHEN (SUM (CASE WHEN B.ENRL_ADD_DT <= :2 THEN B.UNT_PRGRSS
END) OVER (PARTITION BY A.EMPLID)) >= 12 THEN 'Full’

WHEN (SUM (CASE WHEN B.ENRL_ADD_DT <= :2 THEN B.UNT_PRGRSS
END) OVER (PARTITION BY A.EMPLID)) BETWEEN 9 AND 11
THEN ‘3Quarter’

WHEN (SUM (CASE WHEN B.ENRL_ADD_DT <= :2 THEN B.UNT_PRGRSS
END) OVER (PARTITION BY A.EMPLID)) BETWEEN 6 AND 8

THEN 'Half’
ELSE ‘Less’

END

Intermission

Methodology - Query

1. Ildentify What Information is Really Needed

2. Determine Criteria Logic

3. Use Appropriate Records, Tables, and Fields

4. Perform Table Dumps to Learn Tables
a. ldentify Key Fields
b. Develop Criteria for Table
c. ldentify Example/Sample Data

Methodology - Query (continued)

5. Create Table/Record Joins

Run query after each new table join to compare what
has changed — add/lost rows/data.

6. Verify Data Set
/s this the data you want to use?

Methodology - Function Statements (pl)

7. Determine Use of Function Statements
How Do you want to see it?

8. ldentify Data Type
a. Numbers
b. Characters
c. Date

9. Ildentify Needed Manipulation
a. Data Type Conversion
b. Totals
c. Grouping
d. If-Then Logic

Methodology - Function Statements (p2)

10. Build & Test In Increments

CASE WHEN (SUM (CASE WHEN B.ENRL_ADD_ DT <= :2 THEN
B.UNT ARCRES END) OVERNRARR NEHONABY, AFEMPATIO)) 5= UL THEN “Full’

WHEN (AU B sE NRRRR ARV LADD BT LEUM G\ B.UNT PRGRSS

END) OVERHPARTIASONVBN-A.EMPLED))IBETMEENS PINDIINHENDR

‘3QuartedT TAKEN_GPA IS NOT NULL THEN (CASE WHEN

WHEN QU B WHEN BENRT AN+ RN RUERBYUAT PRGRSS

END) DVERAPART ITRON B Y AEMPLIE))IBEAWEENY AND BEHIEN|'Haif'
£, UNT,_JRNSFR) + A TOT_GRADE_POINTS END / CASE WHEN
SUM(C.UNT_TRNSFR) IS NULL THEN A.TOT_TAKEN_GPA ELSE

ENDSUM(C.UNT_TRNSFR) + A.TOT_TAKEN_GPA END)

ELSE 0 END)

END

Methodology - Function Statements (p3)
11. Query Tip Review:

#1: Limit Number of Rows Returned
ROWNUM <= 100

#2: Unique Count
COUNT (DISTINCT A.EMPLID) OVER ()

#3: Multiple Rows Count
COUNT (A.EMPLID) OVER (PARTITION BY A.EMPLID)

Methodology - Function Statements (p4)

12. Using/Viewing SQL
What's REALLY going on?

I"rih=ri3| SC0L I Fh=-=-u|r-=-|

Col| RecodField | Fomat[Re[Ord Xit|/Aga] Heading

1 |AACAD CAREER -Academic Career [Chard [x | | | [Caeer
m STHM - Term Chard X | | | Temn

& TERM EIEEIN DT - Term Beqgin D ate Date EleginDate

- MEST_DAY[SYSDATE, TUESDAY" Date | | | | [MNestTuesday

Fields I Criteria S0L |FiE::5:uIt:s:|

SELECT AACAD CAREER. ASTRML TO _CHAR[A. TERM_BEGIM DT v-kbd-DD,
MEXT_DaY[SYSDATE, TUESDAY")

FROM P5S_TERM_TEL &
WHERE AACAD_CAREER = UGRD

Questions?

Exploring Further

Travel with us as we Go Deeper into the
Mysterious Universe of using Function
Statements with the PS Query Tool.

Exploring Further — SQL Clauses

The Four Basic Areas of SQL.:

SELECT
FROM
WHERE = Determines the Rows by Criteria
ORDER BY = Organizes Final Order

Exploring Further — WHERE Clause

Using Function Expressions as Criteria:

Criteria

Custamize | Find | B8
Logical Expressioni Condition Type Expression 2

Iﬁ AAMRSTITUTION - Academic egual to

Institution

Firs

FSLIMNY

CASEWHEM AACAD CAREER
AEMPLID - EmpliD equal to = "UGRDAND A CUM_GPA =36
THEMN A EMPLID EMD

CASE WHEN A.ACAD_CAREER = '"UGRD' AND A.CUM_GPA = 3.6 THEN A.EMPLID

WHEN A.ACAD_CAREER = "PBAC' AND A.UNT_TAKEN_PRGRSS > 3 THEN A.EMPLID

WHEN A.ACAD_CAREER = 'GRAD' AND A.CUR_GPA = 2.8 THEN A.EMPLID
=\ID)

CASE statements in the criterial WOW!

Exploring Further: 1=1

This profound concept is your key to
full SQL access to the WHERE clause!

Fields ~ Crteria | SOL | Resuls |

Expression 1 Operator | Expression 2

I The Criteria simply states 1 =1, but the SQL states: 1

Fields I Criteria S0GL |FIE!:E:LJ|t:E: '
SELECT A EMPLID, & ACAD CAREER. ASTIMNT BGR @ I
FROM PS_STODOMNT _CAR_TERM &

WwHERE 1=1

Exploring Further — 1=1 2

By Using an Expression and straight SQL!

Expreszion 2

AND ASTHEM =106
ANMD A EMPLID >
AMD A EMPLID =

Page 97 A ’:)7

Exploring Further — 1=1 3

Fields | Citeria | SO Resuls |

| ID_|Carcer| Career Nbt| Tom] Stt Level| Take Prors] e
2280091 UGHD] 'IEIE'I 'IEI 5. EIEIEI 4.000
A nmm

1RD 1:3 1: ._._IIII -_::j
T4UGRD | O[oe 0| oo g
aC | OQORR SO | 3OO 000
OSHPBAC | OJfos1 (S0 | 1sOOO 0000
o 11 Y| 1

]] _i ! I
—n

AND A.STRM = '1061'
AND A.EMPLID > '22800000'
AND A.EMPLID = CASE WHEN A.ACAD_CAREER = 'UGRD'
AND A.CUM_GPA > 3.6
THEN A.EMPLID
WHEN A.ACAD_CAREER ='PBAC' THEN A.EMPLID
END

Exploring Further — Analytic Criteria?

«S0, we've explored using CASE as criteria.

\WWe’'ve unlocked full access to the WHERE and the
ORDER BY clauses by using 1=1.

e|s that enough?
CAN | USE ANALYTIC FUNCTIONS AS CRITERIA?

eAll joins and all WHERE, GROUP BY, and HAVING clauses are completed
before the analytic functions are processed.

eTherefore, analytic functions can appear only in the SELECT list or
ORDER BY clause — not the WHERE clause.

Exploring Further — Analytic Subquery

Description: Top 29% of Jr.arin Trm Term:

Top Percent (-

Criteria Wiew Results
Logical Expressioni Condition Type Expression 2

I I AEMPLID - 1D in list SUBGQUERY

22 Top Level of Query
== Subguery for A EMPLID - 1D
~ Subguery for CADDR USAGE ORDE
Expressions List F

Expressiun Use as Field Add

Ise as Field ‘?r

Fields Wi All
Col Record.Fieldname Format Ord XLAT Agg Heading Text
"'.E'n"-IHEH (FERCEMNT_RAMK O OVER (PARTITIOMN CASEWHEM
D LEVEL _BOT ORDER BY B.CUM_GFPA Chart1 |F'EF' CEMT_RAMK O
DESCN *100 == Cny

Exploring Further — Analytic Subquery @2

SELECT DISTINCT A.EMPLID, A.FIRST_NAME, A.LAST_NAME, C.ADDRESS1, C.ADDRESS2, C.ADDRESSS3,
C.ADDRESS4, C.CITY, C.STATE, CASE WHEN (C.COUNTRY ='USA' AND LENGTH(TRIM(C.POSTAL)) = 9)
THEN SUBSTR(C.POSTAL,1,5) || ' || SUBSTR(C.POSTAL,6,4) ELSE TRIM(C.POSTAL) END, C.COUNTRY

FROM PS_PERSONAL_DATA A, PS_ADDR_USAGE_VW C

WHERE A.EMPLID IN
(SELECT CASE WHEN (PERCENT_RANK () OVER (PARTITION BY B.ACAD_LEVEL_BOT

ORDER BY B.CUM_GPA DESC)) * 100 <=:2 THEN B.EMPLID END
FROM PS_STDNT_CAR_TERM B

WHERE B.STRM = :1

AND B.ACAD_LEVEL_BOT IN ('30','40")

AND B.UNT_TAKEN_PRGRSS > 0

AND B.ELIG_TO_ENROLL ="Y")

AND A.FERPA <>'Y'

AND A.EMPLID = C.EMPLID

AND C.ADDR_USAGE ='DMH'

AND C.ADDR_USAGE_ORDER = (SELECT MIN(D.ADDR_USAGE_ORDER)
FROM PS_ADDR_USAGE_VW D
WHERE D.EMPLID = A. EMPLID
AND D.ADDR_USAGE = 'DMH')

Exploring Further - HINTS

e Oracle SQL Hints
— What are they, when and why should | use them?
— Cost Based Optimizer (CBO)
— Control your query’s own fate...

e Hints are valuable commands that sometimes can be
used to help your queries execute more effectively and
efficiently.

Exploring Further - HINTS

e What is a cost based optimizer?

— An Oracle built-in component that uses data statistics to
identify the query plan with the lowest cost on system
resources, in turn, designing an execution plan for the sql
statement.

— The CBO'’s sole purpose is to optimize the query’s
execution. When it is working at it’s best, no hints should

be required.
— All this is contingent on your data structure.

Unfortunately, sometimes the data in the
database changes (oh so frequently) that the
statistical information previously gathered by the
optimizer is out of date.

Exploring Further - HINTS

That’s where Hints come in...they allow you to
make decisions usually made by the optimizer.

Alas, not everything is definite. The caveat to this
IS when the optimizer is set to lock the statistics

when ideally configured.

Exploring Further - HINTS

There are many different types of hints, which
are categorized as follows:

e Optimization Approaches and Goals

e Access Paths and Query Transformations
e Join Orders

e Join Operations

Parallel Execution

...and several others...

Exploring Further - HINTS

DISCLAIMER: The majority of these Hints require
direct access to write, create or modify sqgl, so
hopefully you have a great working relationship
and rapport with your technical personnel.

With that said, let’s focus on a couple hints that
you CAN use directly within the PS Query Tool...

Exploring Further - HINTS

e All_ ROWS - chooses the cost-based approach to
optimize minimum total resource consumption

— Results returned ONLY after all processing has been
completed

/*+ ALL_ROWS */

e FIRST _ROWS(n) - chooses the approach to optimize
minimum resource usage (response time) to return the
first row.

— Results returned as soon as they are identified

/*+ FIRST_ROWS(n) */

Presenter
Presentation Notes
Use syntax as expression/field (1st field in query)
/*+ FIRST_ROWS(10) */ returns the first 10 rows of data as quickly as possible.
Like ROWNUM (slide 41) but optimized…

Exploring Further - HINTS

DISCLAIMER: The CBO ignores the FIRST ROWS
hint in SELECT statements that contain any of
the following syntax:

e GROUP BY clause
e Group functions
e Use of Distinct

e Set operators

e Union

e Intersect

Exploring Further - HINTS

These statements cannot be optimized for best
response time because all rows accessed by the
statement must first be retrieved before
returning the first row. Although, if the hint is
used, the query will still be optimized, but for
best minimum resource consumption.

e CHOOSE - chooses between ALL_ ROWS or
FIRST ROWS based on statistics gathered

— Statistics available = ALL_ ROWS
— Statistics unavailable = FIRST_ROWS

/*+ CHOOSE_ROWS */

Questions?

Hands-On Problem Solving

e Audience
e Practice Problems
e ldeas |
e Brainstorming

TIPS - Running Total

Generate a Running 1otz

|}
D Term Take Prors Student Total Onverall Total
(1222200 g.000 G G

....... 3.000

______ 12.000

11 10100234 0879 16.000 e

SELECT A.EMPLID, A.STRM, A.UNT_TAKEN_PRGRSS,
SUM(A.UNT_TAKEN_PRGRSS) OVER (PARTITION BY A.EMPLID
ORDER BY A.STRM, A.EMPLID),
SUM(A.UNT_TAKEN_PRGRSS) OVER (ORDER BY A.STRM, A.EMPLID)
FROM PS_STDNT_CAR_TERM A
WHERE ROWNUM <= "25'

TIPS - Numbers to Words (p1l)

e Converting Numbers to Words

— TO_CHAR(TO_DATE(TO_CHAR(A.ACAD_YEAR,'999999999
99"),'J"),"JSP")
e Let’'s examine each component function:
e The inner TO_CHAR converts the number (which would

generally be a numeric variable) to CHAR, so the built-in
processes can do their work

e The TO_DATE converts the CHAR using the J (Julian day)
format. The Julian day is the number of days since January 1,
4712BC.

e Having established the date value, we then convert that date
back to a Julian day. Because the TO_CHAR is used in DATE
context, we can use the J mask to duplicate the original
value, and append the SP (spelling) format mask. 'SP" does
exactly that - it converts the number to words, hence the
string value above.

TIPS - Numbers to Words (p2)

STUDENT NAME GRAD YEAR CLASS OF
Mickey 2005 TWO THOUSAND FIVE
Minnie 1998 ONE THOUSAND NINETEEN HUNDRED NINETY-EIGHT
Goofy 2000 TWO THOUSAND

Donald TBD TO BE DETERMINED

TIPS - Amounts to Words

e Converting Amounts to Words

— SELECT 'MICKEY MOUSE', A.LINE_AMT, DECODE(FLOOR(
A.LINE_AMT),0,'ZERO",TO_CHAR(TO_DATE(FLOOR(
A.LINE_AMT),"3"),"JSP)) | |' DOLLARS AND '| |
DECODE(MOD(A.LINE_AMT*100,100),0,'ZERO",
TO_CHAR(TO_DATE(MOD(
A.LINE_AMT*100,100),'J"),"JSP"))| |' CENTS' FROM

PS ITEM_LINE SFA WHERE A.EMPL_NAME = ‘Mickey
Mouse'

Criteria | SOL Results

MICEEY MOUSE 93200 | NINE HUMNDRED WIMET-EIGHT DOLLARS AMND ZERO CEWNTS
OME THOUSAND ONE HUWDRED DOLLARS AMD ZERQ CENTS
124800 |0ONE THOUSAND T'w'0 HUNDRED FORTY-EIGHT DOLLARS AND ZERO CENTS
84400 EIGHT HUMDRED FORTY-FOUR DOLLARS AMD ZERO CEWNTS
713,00 SEVEN HUNDRED NINETEEM DOLLAR ZERD CEMTS
35277 | THREE HUNDRED FIFTY-Tw0 DOLLARS AND SEVENTY-SEVEN CENTS

Questions?

Review

e Functions are SQL commands.
e The Three Main Categories are:
— Aggregate
— Single-row
— Analytic
e Functionality of Functions:
— Numeric
— String/Character
— Conversion
— Date and Time
— If-Then Logic
— Analytic Grouping
e Be Methodical in your Methodology.
e Get Familiar with SQL.

Conclusion

e Reviewed both common function statements
and complex expressions.

e Explored the many possibilities of using
function statements to provide greater
flexibility, functionality and power to queries.

e Discovered creative ways to overcome many of
the limitations of the PS Query Tool for
Improved reporting use.

Resources

Harvard - Key Functions in Oracle SQL

Oracle 9i SQL Reference
Web:

Pdf:

ORACLE 10g SQL Reference
web:

pdf:

GridinSoft Notepad Lite:

HEUG 2006 Power Expressions Presentation:

http://vpf-web.harvard.edu/applications/ad_hoc/key_functions_in_oracle_sql.pdf
http://vpf-web.harvard.edu/applications/ad_hoc/key_functions_in_oracle_sql.pdf
http://vpf-web.harvard.edu/applications/ad_hoc/key_functions_in_oracle_sql.pdf
http://www.cs.ncl.ac.uk/teaching/facilities/swdoc/oracle9i/server.920/a96540/toc.htm
http://www.cs.utah.edu/classes/cs6530/oracle/doc/B10501_01/server.920/a96540.pdf
http://download-west.oracle.com/docs/cd/B19306_01/server.102/b14200/toc.htm
http://download-west.oracle.com/docs/cd/B19306_01/server.102/b14200/toc.htm
http://download-west.oracle.com/docs/cd/B19306_01/server.102/b14200/toc.htm
http://download-west.oracle.com/docs/cd/B19306_01/server.102/b14200.pdf
http://download-west.oracle.com/docs/cd/B19306_01/server.102/b14200.pdf
http://download-west.oracle.com/docs/cd/B19306_01/server.102/b14200.pdf
http://www.gridinsoft.com/downloads.php
http://www.heug.org/index.php?mo=do&op=sd&sid=4228&type=0

Questions?

Contacts

Uriel Hernandez

Information Technology Applications Specialist

Project Management & Information Technology Department
Central Washington University

E-mail:

Tim McGuire

Information Technology Applications Specialist

Project Management & Information Technology Department
Central Washington University

E-mail:

mailto:mcguiret@cwu.edu

This presentation and all Alliance 2007
presentations are available for download
from the Conference Site

Presentations from previous meetings are also available

	Expressions in Query:
	Presenters
	Overview
	Agenda Topics
	CWU Trivia
	PeopleSoft HRSA at CWU
	Ground Rules
	SQL FUNCTIONS*
	What are functions?
	Function Groups
	Functions Groups (continued)
	Function Statements - Review
	Function Statements - Example
	Questions?
	Function Categories
	Aggregate Functions
	Aggregate Functions
	Aggregate and Single-row Functions
	Aggregate and Single-row Functions
	Single-Row Functions
	Single-row Functions
	Single-row Functions - Types
	Questions?
	Numeric Functions - CEIL/FLOOR
	Numeric Functions - MOD/REMAINDER
	Numeric Functions - ROUND/TRUNC
	Questions?
	String Functions - CONCAT
	String Functions - INITCAP/INSTR
	String Functions - LOWER/REPLACE
	String Functions - SOUNDEX/XLAT
	String Functions - TRIM/UPPER
	String Functions - LENGTH
	String Functions - SUBSTR
	Questions?
	Conversion Functions
	Conversion Functions (continued)
	Questions?
	Date and Time Functions
	Date and Time Functions – MONTHS_BETWEEN
	Date and Time Functions – NEXT_DAY
	Questions?
	Advanced Functions
	Advanced Functions - GREATEST/LEAST
	Advanced Functions - NVL/NVL2
	Advanced Functions – ROWNUM (p1)
	Advanced Functions – ROWNUM (p2)
	Advanced Functions (continued)
	Advanced Functions - COALESCE
	Advanced Functions - DECODE
	Advanced Functions - CASE
	Advanced Functions – CASE (p1)
	Advanced Functions – CASE (p2)
	Advanced Functions – CASE (p3)
	Advanced Functions – CASE (p4)
	Advanced Functions – CASE (p5)
	Advanced Functions – CASE (p6)
	Questions?
	Analytic Functions
	Analytic Functions – Definition
	Analytic Functions – Syntax
	Analytic Functions – COUNT
	Analytic Functions – Change Group
	Analytic Functions – Distinct
	Analytic Functions – Multiple Groups
	Analytic Functions – SUM
	Analytic Functions – Query Tip #2
	Analytic Functions – Query Tip #3
	Analytic Functions – ORDER BY
	Analytic Functions – Syntax Review
	Analytic Functions - RANK
	Analytic Functions – DENSE_RANK
	Analytic Functions - PERCENT_RANK
	Analytic Functions – LAG | LEAD
	Analytic Functions – LAG | LEAD (p2)
	Analytic Functions - NTILE
	Analytic Functions – ROW_NUMBER
	Analytic Functions – ROW_NUMBER (p2)
	Analytic Functions - RATIO_TO_REPORT
	Questions?
	Power Combo
	Power Combo - Introduction
	Power Combo - Example
	Power Combo – Example Continued
	Intermission
	Methodology - Query
	Methodology - Query (continued)
	Methodology - Function Statements (p1)
	Methodology - Function Statements (p2)
	Methodology - Function Statements (p3)
	Methodology - Function Statements (p4)
	Questions?
	Exploring Further
	Exploring Further – SQL Clauses
	Exploring Further – WHERE Clause
	Exploring Further – 1=1 (p1)
	Exploring Further – 1=1 (p2)
	Exploring Further – 1=1 (p3)
	Exploring Further – Analytic Criteria?
	Exploring Further – Analytic Subquery
	Exploring Further – Analytic Subquery (p2)
	Exploring Further - HINTS
	Exploring Further - HINTS
	Exploring Further - HINTS
	Exploring Further - HINTS
	Exploring Further - HINTS
	Exploring Further - HINTS
	Exploring Further - HINTS
	Exploring Further - HINTS
	Questions?
	Hands-On Problem Solving
	TIPS - Running Total
	TIPS - Numbers to Words (p1)
	TIPS - Numbers to Words (p2)
	TIPS - Amounts to Words
	Questions?
	Review
	Conclusion
	Resources
	Questions?
	Contacts
	Slide Number 122

