
Expressions in Query:

Session #23398 (S1)
March 11, 2007

(8:30 AM – 11:30 AM)

Alliance 2007 Conference
Orlando, Florida

An In-Depth Exploration
Into Function Statements

Page 2

Presenters

Uriel Hernandez
Information Technology Applications

Specialist
Central Washington University

Tim McGuire
Information Technology Applications

Specialist
Central Washington University

Page 3

Overview

• Review in detail both common function
statements and complex expressions.

• Explore the many possibilities of using
function statements to provide greater
flexibility, functionality and power to
your queries.

• Discover creative ways to overcome
many of the limitations of the PS Query
Tool for improved reporting use.

Page 4

Agenda Topics

•Exploring Functions
•Methodology for Finding Solutions
•Break
•Exploring Further
•Hands-On Problem Solving
•Resources
•Q & A

Page 5

CWU Trivia
Main Campus

• Located in Ellensburg, WA

• 7,754 full-time students

• 8,225 in attendance

Off-site Centers

• Six satellite centers

• 3 each in Eastern and Western, WA

• 1,246 full-time students

• 1,734 in attendance

Page 6

PeopleSoft HRSA at CWU

•Version: PeopleSoft 8.0 SP1
•PeopleTools: 8.22.12
•Database: Oracle 10g
•Live Date: September 2004
•Self-Service Name: Safari
•Currently upgrading to HCMCS 8.9
•Projected Go-Live: October 2007

Page 7

Ground Rules

•Interactive - Participation Required
•Understanding of Query Tool
•Correct Joins and Criteria Needed
•Not Table Specific
•System Independent
•Just Options
•Ideas Welcome

Page 8

SQL FUNCTIONS*

*Command Set for Oracle 9i/10g Databases

Page 9

What are functions?

Functions are special types of command
words in the SQL command set, usually
one-word commands which manipulate
data items and return a single value
which can be determined by various input
parameters.

Page 10

Function Groups

There are two groups of functions:

• Deterministic
• Nondeterministic

So, what does that
really mean!?!?

Page 11

Functions Groups (continued)

Deterministic functions always return the
same result

• When having specific set of input values w ith
the same state of database

Nondeterministic functions may return
different results

• Even w ith specific set of input values and
same state of database

Page 12

Function Statements - Review

Function Statements are predefined
system commands expressed with their
operational parameters.

Page 13

Function Statements - Example

JUMP

JUMP(‘Mickey’,24,120)

How Long?

How High?

Who?

= 24 inches

= 120 seconds

= Mickey

Page 14

Questions?

Page 15

Function Categories
Oracle identifies six different categories of
functions:

• Aggregate
• Single-row
• Analytic
• Object Reference
• Model Function
• User Defined

Our focus will be on Aggregate, Single-row, and
Analytic functions.

Page 16

AGGREGATE FUNCTIONS

Aggregate Functions

Page 17

Aggregate Functions

Operate against a collection of values, but return
a single, summarizing value.

• AVG - computes the average of values in a column or
an expression

• SUM - computes the sum (both AVG and SUM work with
numeric values and ignore NULL values)

• COUNT - counts all rows defined in an expression

• MIN - identifies the minimum value in a column by the

expression

• MAX - finds the maximum value in a column by the
expression

Page 18

Aggregate and Single-row Functions

The number of values an aggregate
function processes may vary, depending
on the number of rows queried from the
table.

This unique process makes aggregate
functions different from single-row
functions, which require a fixed number
and fixed type of parameters .

Page 19

Aggregate and Single-row Functions

Aggregate and Single-row functions
complement each other. They both can be
used in the following:

• SELECT statement (in the select list)
• WHERE clauses
• HAVING clauses

Page 20

SINGLE-ROW FUNCTIONS

Single-Row Functions

Page 21

Single-row Functions

• Operate on a single value and then
return a single value.

• They can be used wherever an
expression is valid.

• They can be divided into different logical
categories.

Page 22

Single-row Functions - Types

The different types of Single-row
functions are:

• Numeric
• String/Character
• Conversion
• Date and Time
• Advanced

Page 23

Questions?

Page 24

Numeric Functions - CEIL/ FLOOR

Numeric: performs operations on numeric values
and returns numeric values, accurate to 38
decimal points

• CEIL - returns the smallest integer value that is greater
than or equal to a number
− ceil(number)

• ceil(21.3) = 22
• ceil(15.9) = 16
• ceil(-8.9) = -8

• FLOOR - returns the largest integer value that is equal
to or less than a number
− floor(number)

• floor(21.6) = 21
• floor(15.9) = 15
• floor(-8.9) = -9

Page 25

Numeric Functions - MOD/ REMAINDER

• MOD - returns the remainder of m divided by n (and
returns m if n is 0)
− mod(m,n)

• Two functions for the price of one (uses FLOOR functionality)
• Second function applied when dealing with decimals
• See REMAINDER

• REMAINDER - returns the remainder of m divided by n

− remainder(m,n)
• New 10g function
• Two functions for the price of one (uses ROUND functionality)
• remainder(16,3) = 1
• remainder(16,6) = 4
• remainder(16,0) = 16
• remainder(-16,3) = -1

Presenter
Presentation Notes
Two functions that do the same thing, to a degree…
mod(11.6,2) = 1.6 (whole numbers only - 2 goes into 11.6 five times (10), so 11.6 – 10 = 1.6)
mod(11.6,2.1) = 1.1 (2.1 goes into 11.6 five times (10.5), so 11.6 – 10.5 = 1.1)

Page 26

Numeric Functions - ROUND/ TRUNC

• ROUND - returns a number rounded to a certain
number of decimal points
− round(number,[decimal places])

• number is the number to round and decimal_places is the
number of places rounded to (if omitted, default is 0)

• round(123.456) = 123
• round(123.456,1) = 123.5
• round(123.456,2) = 123.46

• TRUNC - returns a number truncated to a certain
number of decimal points
− trunc(number,[decimal places])

• number is the number to round and decimal_places is the
number of places rounded to (if omitted, default is 0)

• trunc(123.456,1) = 123.4
• trunc(123.456,-1) = 120

Presenter
Presentation Notes
Use with numeric datatype fields

Page 27

Questions?

Page 28

String Functions - CONCAT

String (also referred to as Character): perform
operations on a string (char/varchar) input value
and return a string or numeric value

• CONCAT - appends two or more literal expressions,
column values or variables together into one string
− (string1 || string2 || string_n) or concat(string1,string2)

• A.FIRST_NAME || A.LAST_NAME = MickeyMouse
• A.FIRST_NAME || ' ' || A.LAST_NAME = Mickey Mouse

• ‘NAME:'||A.FIRST_NAME || CASE WHEN LENGTH

(A.MIDDLE_NAME) = 1 AND A.MIDDLE_NAME <> ' ' THEN ' '
|| A.MIDDLE_NAME || '.' WHEN LENGTH (A.MIDDLE_NAME)
> 1 THEN ' ' || A.MIDDLE_NAME ELSE '' END || ' ' ||
A.LAST_NAME || ' ' || CASE WHEN A.NAME_SUFFIX <> ' '
AND A.NAME_SUFFIX NOT LIKE 'I_' THEN A.NAME_SUFFIX ||
'.' ELSE A.NAME_SUFFIX END

Presenter
Presentation Notes
|| is the function symbol for concatenate (concatenation operator)

Page 29

String Functions - INITCAP/ INSTR

• INITCAP - converts a string to initial capital letters
− initcap(string1)

• initcap(‘mickey mouse’) = Mickey Mouse
• initcap(‘MINNIE MOUSE’) = Minnie Mouse

• INSTR - returns the location of a substring in a string

− instr(string1,string2,[start_position],[nth_appearance])
• string1 is the string to search and string2 is the substring to

search for in string1
• start_position is the position in string1 where the search

begins (if omitted, default is 1 - first position in string) and
nth_appearance is the nth appearance of string2 (if omitted,
default is 1)

• instr(‘Mickey’,‘c’) = 3 (first occurrence of the letter c, as in “C
you real soon…”)

• instr(‘Mickey Mousey’,‘y’,1,2) = 13 (second occurrence of the
letter Y, as in, “Y, because we like you…”)

Presenter
Presentation Notes
Mickey Mouse Alma Mater closing…M-I-C, see you real soon, K-E-Y, why? Because we like you, M-O-U-S-E.

Page 30

String Functions - LOWER/ REPLACE

• LOWER - converts a string to all lowercase characters
− lower(string1)

• Similar to initcap but focusing on the entire string
• lower(‘Mickey Mouse’) = mickey mouse
• lower(‘MINNIE MOUSE’) = minnie mouse

• REPLACE - replaces a sequence of characters in a

string with another set of characters
− replace(string1,string_to_replace,[replacement_string])

• string1 is the string being affected and string_to_replace is
the string which w ill be searched for in string1

• replacement_string is optional (if omitted, the replace
function removes all occurrences of string_to_replace and
returns the resulting string)

• replace(‘Mickey the Rat’,‘Rat’,‘Mouse’) = Mickey the Mouse

Page 31

String Functions - SOUNDEX/ XLAT
• SOUNDEX - returns a string containing the phonetic

representation (the way it sounds) of the string
− soundex(string1)

• Allows for the comparison of words that are spelled
differently, but sound alike in English

• soundex(‘Jon’) = John, Jon, Jean-Pierre, Jonny, Johnnie
• soundex(A.FIRST_NAME) = soundex(‘John’)

• TRANSLATE - converts a string from one character set
to another
− translate(string1,string_to_replace,[replacement_string])

• string1 is the string being affected and string_to_replace is
the string which will be searched for in string1

• All characters in the string_to_replace will be replaced with
the corresponding character in the replacement_string

• Similar to REPLACE, except TRANSLATE provides single-char,
one-to-one substitution instead of string substitutions

• translate(‘Foggy’,‘Fgg’,‘Gof’) = Goofy

Presenter
Presentation Notes
Thanks to Dr. Donald E Knuth, a brilliant computer programmer (Stanford University), for “The Art of Computer Programming, Volume 3: Sorting and Searching” for his numeric definition of phonetic representation (his mind boggling formula assigning numbers to letters (consonants) after removing corresponding vowels and h, w and y)

Page 32

String Functions - TRIM/ UPPER

• TRIM - removes leading characters, trailing characters
or both from a character string
− trim([leading|trailing|both[trim_character]]string1)

• leading removes trim_string from front of string1
• trailing removes trim_string from end of string1
• both removes trim_string from front and end of string1
• trim(leading ‘$’ from ‘$123.45’) = 123.45
• trim(trailing ‘.’ from ‘Mr.’) = Mr
• trim(both ‘.’ from ‘Mr. Jones Jr.’) = Mr. Jones Jr

• UPPER - converts a string to all uppercase characters

− upper(string1)
• upper(‘Mickey Mouse’) = MICKEY MOUSE
• upper(‘minnie mouse’) = MINNIE MOUSE

Presenter
Presentation Notes
Notice with trim(both ‘.’ from ‘Mr. Jones Jr.’) only removed the trailing period, because the first period encountered was in the middle of the string.

Page 33

String Functions - LENGTH

• LENGTH – returns the number of a characters
in a string or field.

− LENGTH(char)

• It returns a Number.
• It counts all characters including trailing blanks.

−LENGTH(‘Mickey Mouse’) = 12
−LENGTH(A.EMPLID) = 8

Page 34

String Functions - SUBSTR

• SUBSTR – extracts a portion of a string or field.

− SUBSTR(char, position [, substring_length])

• position is the Starting Position.
• If position is 0, then it is treated as 1.
• If position is positive, then the count starts from the

beginning.
• If position is negative, then it starts from the end and counts

backward.
• substring_length is the number of characters to extract

− SUBSTR('ABCDEFG',3,4) = CDEF
− SUBSTR('ABCDEFG',-5,3) = CDE

Page 35

Questions?

Page 36

Conversion Functions

Conversion: Change or convert values from one
data type to another (character to numeric,
numeric to character, character to date or date
to character)

Note: There are two things you should notice regarding the
differences between numeric data types and character string
types:

1. Arithmetic expressions and functions can be used
on numeric values.

2. Numeric values are right-justified, whereas
character string data types are left-justified in
the output result.

Page 37

Conversion Functions (continued)

• TO_CHAR - converts a number or date to a string
− to_char(value,[format_mask])

• value is either a number or date that will be converted to a string
• format_mask is the format used to convert the value to a string
• to_char(1234.567, '9999.9') = 1234.5
• to_char(1234.567, '9,999.99') = 1,234.56
• to_char(1234.56, '$9,999.00') = $1,234.56
• to_char(23, '000099') = 000023
• to_char(sysdate, 'yyyy/mm/dd') = 2007/03/11
• to_char(sysdate, 'Month DD, YYYY') = March 11, 2007

• TO_DATE - converts a string to a date
− to_date(string1,[format_mask])

• string1 is the string that will be converted to a date
• format_mask is the format that will be used to convert string1 to

a date
• to_date(‘39152','MMDDYY') = 03/11/07

Presenter
Presentation Notes
Field data type conversions

Page 38

Questions?

Page 39

Date and Time Functions

Date and Time: Perform operations on a date and
time input values and return string, numeric, or
date and time values

• SYSDATE - returns the current system date and time on

your local database
− sysdate

• Let’s use March 11, 2007 (03-11-07)
• to_char(sysdate - 30, ‘MM-DD-YY’) = 02-09-07

• ADD_MONTHS - returns a date plus n months
− add_months(date1,n)

• add_months(‘11-Mar-07’,3) = 11-Jun-07
• add_months(‘11-Mar-07’,-3) = 11-Dec-06

Presenter
Presentation Notes
Last sysdate example uses both conversion and date/time function

Page 40

Date and Time Functions – MONTHS_BETWEEN

• MONTHS_BETWEEN - returns number of
months between two dates.

• MONTHS_BETWEEN(date1, date2)

If today's date = March 05, 2007 then

MONTHS_BETWEEN('12-MAR-09', SYSDATE)

 = 24.203837365

Page 41

Date and Time Functions – NEXT_DAY

• NEXT_DAY - returns the date of the first
weekday named that is later than the date
specified.

• NEXT_DAY(date, char)

TO_CHAR(NEXT_DAY(TO_DATE((A.TERM_BEGIN_DT),
'YYYY-MM-DD'),'TUESDAY'), 'YYYY-MM-DD')

Page 42

Questions?

Page 43

Advanced Functions

Only for the brave and adventurous
PeopleSoft query writers; functions to
stimulate your creative/analytical mind:

•GREATEST / LEAST
•NVL / NVL2
•ROWNUM
•COALESCE
•DECODE
•CASE

Page 44

Advanced Functions - GREATEST/ LEAST

• GREATEST - returns the greatest from a list
of one or more expressions.

−GREATEST(expr [, expr]...)

• LEAST - returns the least from a list of
expressions.

−LEAST(expr [, expr]...)

(The first expr will determine the data type that is returned.)

Presenter
Presentation Notes
Compare multiple Terms (brought in more than once, Different Types (Admit Term, Grad Term)
Compare Cum GPA vs Term GPA
Payments

Page 45

Advanced Functions - NVL/ NVL2
• NVL - allows substitution of a value when a null value

is encountered.
− NVL(string1, replace_with)

• string1 is the string to be tested for a null value and
replace_w ith is the value returned if string1 is null

• NVL(course_gpa,‘Grade Pending’)
− if course_gpa is null then Grade Pending is returned otherwise

course_gpa value is returned

• NVL2 - allows the substitution of a value when a null
value is encountered, as well as when a non-null value
is encountered.
− NVL2(string1, value_if_not_null, value_if_null)

• string1 is the string to be tested for a null value
• value_if_not_null is the value returned if string1 is not null

and value_if_null is the value returned is string1 is null
• NVL2(FERPA,‘Do Not Disclose’,‘Disclose’)

 (NVL2 extends the functionality of NVL by letting you determine the value

returned based on whether something is null or not null.)

Presenter
Presentation Notes
NVL – instead of being blank – “Grade Pending”
NVL2 – privacy – “Graded”, “Not Graded”

Page 46

• ROWNUM - assigns a number indicating
the order in which each row is returned
by a query.

Advanced Functions – ROWNUM (p1)

Page 47

Advanced Functions – ROWNUM (p2)

Query Tip # 1:

LIMIT NUMBER OF ROWS RETURNED

ROWNUM <= 100

• Do not use Equal to (=) or Greater Than (>).
• If an ORDER BY clause follows ROWNUM in the same query, then
the rows will be reordered by the ORDER BY clause.

Page 48

Advanced Functions (continued)

The next three functions have similar functionality,
yet each subsequent function is more powerful
then the previous one.

•COALESCE
•DECODE
•CASE

•All three perform ‘IF-THEN’ operations

Page 49

Advanced Functions - COALESCE

• COALESCE - returns the first non-null expression in the
list (if all expressions evaluate to null, then the
coalesce function will return null)
− coalesce(expr1, expr2, …, expr_n)

• ‘IF-THEN’ functionality
• coalesce(mickey,minnie,goofy)

− IF mickey exists (not null) THEN result = mickey;
− ELSIF minnie exists (not null) THEN result = minnie;
− ELSIF goofy exists (not null) THEN result = goofy;
− ELSE result = null;
− END IF

• The coalesce function compares each value one by one

Presenter
Presentation Notes
COALESCE function is a generalization of the NVL function.
Many “Empty” fields in PS are not NULL – they have a space.

Page 50

Advanced Functions - DECODE

• DECODE - performs the functionality of an ‘IF-THEN-
ELSE’ statement, also comparing each value , one by
one, but now with specific search criteria
− decode(expression, search, result[, search, result]…[,

default])
• expression is the value to compare, search is the value that is

compared to expression and result is the value returned, if
expression equals search

• default is optional, if no matches are found decode returns
the default value (unless omitted, then statement returns
null)
− decode(char_id,01,‘Mickey’,02,‘Minnie’,03,‘Goofy’,‘Donald’)
− IF char_id = 01 THEN result = Mickey;
− ELSIF char_id = 02 THEN result = Minnie;
− ELSIF char_id = 03 THEN result = Goofy;
− ELSE result = Donald;
− END IF

Presenter
Presentation Notes
DECODE is ORACLE specific and it is limited to single positive conditions.

Page 51

Advanced Functions - CASE

• CASE - performs the functionality of an “IF-
THEN-ELSE” statement with greater possibilities.
− CASE expression

• WHEN condition_1 THEN result_1
• WHEN condition_2 THEN result_2
• WHEN condition_n THEN result_n
• ELSE result END

Presenter
Presentation Notes
This is the syntax the “Simple Case Expression” format.

Page 52

IF …. THEN …. ELSE

CASE WHEN ….. THEN ….. ELSE ….. END

• CASE expressions are ANSI-standard.

• CASE was introduced in Oracle8i and enhanced in Oracle9i.

• CASE is part of the SQL standard, whereas DECODE is not.

• Thus, the use of CASE is preferable.

Advanced Functions – CASE (p1)

Page 53

CASE WHEN B.FERPA = 'Y' THEN 'FERPA - DO NOT
DISCLOSE' ELSE '' END

CASE WHEN ….. THEN ….. ELSE ….. END

CASE WHEN B.FERPA = 'Y'

THEN 'FERPA - DO NOT DISCLOSE'

ELSE ''
END

Advanced Functions – CASE (p2)

Presenter
Presentation Notes
This is the syntax the “Searched Case Expression” format.
This seems to work more consistently within the PS Query Tool.

Page 54

CASE WHEN (B.COUNTRY = 'USA' AND
 LENGTH(TRIM(B.POSTAL)) = 9)
 THEN SUBSTR(B.POSTAL,1,5) || '-' ||
 SUBSTR(B.POSTAL,6,4)
 ELSE TRIM(B.POSTAL)
 END

CASE, LENGTH, SUBSTR, ||, TRIM

Before

 After
989267405
98020
98948-3722

98926-7405
98020
98948-3722

Zip Code Plus 4

Advanced Functions – CASE (p3)

Page 55

CASE WHEN (SUM(C.UNT_TRNSFR * C.GRD_PTS_PER_UNIT) /
SUM(C.UNT_TRNSFR)) IS NULL THEN A.CUM_GPA ELSE (CASE
WHEN SUM(C.UNT_TRNSFR) IS NOT NULL OR A.TOT_TAKEN_GPA
IS NOT NULL THEN (CASE WHEN SUM(C.GRD_PTS_PER_UNIT *
C.UNT_TRNSFR) IS NULL THEN A.TOT_GRADE_POINTS ELSE
SUM(C.GRD_PTS_PER_UNIT * C.UNT_TRNSFR) +
A.TOT_GRADE_POINTS END / CASE WHEN SUM(C.UNT_TRNSFR)
IS NULL THEN A.TOT_TAKEN_GPA ELSE SUM(C.UNT_TRNSFR) +
A.TOT_TAKEN_GPA END) ELSE 0 END) END

CASE WHEN ….. THEN ….. ELSE ….. END

Advanced Functions – CASE (p4)

Nested

Page 56

CASE WHEN (SUM(C.UNT_TRNSFR * C.GRD_PTS_PER_UNIT) /
 SUM(C.UNT_TRNSFR)) IS NULL
 THEN A.CUM_GPA
 ELSE (CASE WHEN SUM(C.UNT_TRNSFR) IS NOT NULL OR
 A.TOT_TAKEN_GPA IS NOT NULL
 THEN (CASE WHEN SUM(C.GRD_PTS_PER_UNIT *
 C.UNT_TRNSFR) IS NULL
 THEN A.TOT_GRADE_POINTS
 ELSE SUM(C.GRD_PTS_PER_UNIT *
 C.UNT_TRNSFR) + A.TOT_GRADE_POINTS
 END / CASE WHEN SUM(C.UNT_TRNSFR) IS NULL
 THEN A.TOT_TAKEN_GPA
 ELSE SUM(C.UNT_TRNSFR) +
 A.TOT_TAKEN_GPA
 END)
 ELSE 0
 END)
END

Advanced Functions – CASE (p5)

Page 57

Notes:

• Oracle Database uses short-circuit evaluation, so place the MOST
restrictive condition FIRST.

• Case expressions enable use of full mathematic & SQL logic.
 (=, <>, >, <, +, -, *, /, AND, OR, IN, BETWEEN, etc.)

• The maximum number of arguments in a CASE expression is 255,

and each WHEN ... THEN pair counts as two arguments. To avoid
exceeding the limit of 128 choices, you can nest CASE
expressions.

CASE WHEN ….. THEN ….. ELSE ….. END

Advanced Functions – CASE (p6)

Page 58

Questions?

Page 59

ANALYTIC FUNCTIONS

Analytic Functions

Page 60

• Analytic functions compute an aggregate
value based on a group of rows.

 They differ from aggregate functions in that they return
multiple rows for each group.

The group of rows is called a window.

 Analytic functions are the last set of operations performed in a
query except for the final ORDER BY clause. All joins and all
WHERE, GROUP BY, and HAVING clauses are completed before
the analytic functions are processed.

 Analytic functions are commonly used to compute cumulative,
moving, centered, and reporting aggregates.

Calculations are independent of output.

Analytic Functions – Definition

Page 61

….. (…..) OVER (PARTITION BY …..)

COUNT (…..) OVER (PARTITION BY …..)

COUNT (A.EMPLID) OVER (PARTITION BY A.STRM)

Partition Statement Syntax

Analytic Functions – Syntax

Page 62

COUNT (A.EMPLID) OVER (PARTITION BY A.STRM)

• Function operation
and grouping happens
after all query criteria
have been met.

• Calculation is
independent of output.

• The value repeats
for each row with that
group/partition.

Analytic Functions – COUNT

Page 63

COUNT (A.EMPLID) OVER (PARTITION BY A.STRM)

COUNT (A.EMPLID) OVER (PARTITION BY A.ACAD_LEVEL_BOT)

Analytic Functions – Change Group

Page 64

COUNT (A.EMPLID) OVER (PARTITION BY A.STRM)
COUNT (A.EMPLID) OVER (PARTITION BY A.ACAD_LEVEL_BOT)

COUNT (DISTINCT A.EMPLID) OVER (PARTITION BY A.ACAD_LEVEL_BOT)

Analytic Functions – Distinct

Page 65

COUNT (A.EMPLID) OVER (PARTITION BY A.ACAD_LEVEL_BOT)

COUNT (DISTINCT A.EMPLID) OVER (PARTITION BY A.ACAD_LEVEL_BOT)

COUNT (DISTINCT A.EMPLID) OVER
 (PARTITION BY A.ACAD_LEVEL_BOT, A.STRM)

Analytic Functions – Multiple Groups

Presenter
Presentation Notes
For every change of Academic Level and Term.

Page 66

Total Credits by ID

SUM (A.UNT_TAKEN_PRGRSS) OVER (PARTITION BY A.EMPLID)

Analytic Functions – SUM

Page 67

COUNT (A.EMPLID) OVER (PARTITION BY 'C')

Group by a Constant

COUNT (DISTINCT A.EMPLID) OVER (PARTITION BY 'C')

Analytic Functions – Query Tip #2

COUNT (A.EMPLID) OVER ()

COUNT (DISTINCT A.EMPLID) OVER ()

Page 68

Count Multiple ID’s

COUNT (A.EMPLID) OVER (PARTITION BY A.EMPLID)

Analytic Functions – Query Tip #3

Page 69

….. (…..) OVER (PARTITION BY A.ACAD_LEVEL_BOT
ORDER BY A.CUM_GPA DESC)

(PERCENT_RANK () OVER (PARTITION BY
A.ACAD_LEVEL_BOT ORDER BY A.CUM_GPA DESC)) * 100

PERCENT_RANK () OVER (PARTITION BY
A.ACAD_LEVEL_BOT ORDER BY A.CUM_GPA DESC)

Analytic Functions – ORDER BY

Page 70

….. (…..) OVER (PARTITION BY …..)

….. (…..) OVER (PARTITION BY ….. ORDER BY ….. DESC)

Analytic Functions – Syntax Review

….. () OVER ()

ASC | DESC Specify the ordering sequence (ascending or descending).
ASC is the default.

….. (…..) OVER (PARTITION BY ….. ORDER BY ….. DESC NULLS LAST)

NULLS LAST is the default for ascending order.
NULLS FIRST is the default for descending order.

Page 71

Analytic Functions - RANK

• RANK - calculates the rank of a value in a
group of values.

−RANK() OVER ([query_partition_clause] order_by_clause)

− Returns the rank as a NUMBER.
− RANK computes the rank of each row returned from a query

with respect to the other rows returned in the group.
− Rows with equal values for the ranking criteria receive the

same rank.

Page 72

Analytic Functions – DENSE_RANK

• DENSE_RANK - computes the rank of a
row in an ordered group of rows.

−DENSE_RANK() OVER([query_partition_clause]

order_by_clause)

− Returns the rank as a NUMBER.
− The ranks are consecutive integers beginning with 1.
− Rank values are not skipped in the event of ties.
− Rows with equal values for the ranking criteria receive the

same rank.

Page 73

Analytic Functions - PERCENT_RANK

• PERCENT_RANK - calculates the rank of r minus
1, divided by 1 less than the number of rows
being evaluated (the entire query result set or a
partition).

−PERCENT_RANK() OVER ([query_partition_clause]

order_by_clause)

− The return value is a NUMBER.
− The range of values returned by PERCENT_RANK is 0 to 1,

inclusive.
− The first row in any set has a PERCENT_RANK of 0.

Page 74

Analytic Functions – LAG | LEAD

• LAG | LEAD - provide access to more than one row of a
table at the same time without a self join.

 Given a series of rows returned from a query and a position
of the cursor, (LAG|LEAD) provides access to a row at a
given physical offset (prior|beyond) that position.

− LAG(value_expr [, offset] [, default]) OVER ([query_partition_clause]

order_by_clause)

− If you do not specify offset, then its default is 1.
− The optional default value is returned if the offset goes beyond the

scope of the window.
− If you do not specify default, then its default is null.

Page 75

Analytic Functions – LAG | LEAD (p2)

Compare Address Changes

LAG(A.ADDRESS1, 1, 'NO CHANGE') OVER
 (PARTITION BY A.EMPLID ORDER BY A.EFFDT)

Page 76

Analytic Functions - NTILE

• NTILE - divides an ordered data set into the
number of buckets as indicated and assigns the
appropriate bucket number to each row.

−NTILE(expr) OVER ([query_partition_clause] order_by_clause)

−Used to evenly distribute a group into subgroups.
− The return value is a NUMBER.
− The number of rows in the buckets can differ by at most 1.
− The remainder values are distributed one for each bucket,

starting with bucket 1.

• NTILE(6) OVER (ORDER BY A.LAST_NAME)

Presenter
Presentation Notes
Distributing Students to advisers
Dividing students into Orientation sessions.

Page 77

Analytic Functions – ROW_NUMBER

• ROW_NUMBER - assigns a unique number to each row
within a group in the ordered sequence of rows
specified in the order-by-clause

− ROW_NUMBER() OVER ([query_partition_clause]

order_by_clause)

• Can perform TOP-N query functionality.
• It is similar to ROWNUM in that it numbers the output rows,

although ROWNUM is one unbroken sequence over the whole
rowset, and ROW_NUMBER resets back to one for each
partition defined within the set.

• ROW_NUMBER() OVER (PARTITION BY A.ACAD_LEVEL_BOT
ORDER BY A.UNT_TAKEN_PRGRSS DESC)

Presenter
Presentation Notes
ROW_NUMBER is similar to ROWNUM but works in a Analytic Function grouping instead of a Single-Row.
Also, not to be confused with ROWID.

Page 78

Analytic Functions – ROW_NUMBER (p2)

Providing Top-N functionality by combining
ROW_NUMBER with ROWNUM:

SELECT A.EMPLID, A.ACAD_CAREER, A.STRM, A.ACAD_LEVEL_BOT,
A.UNT_TAKEN_PRGRSS, ROW_NUMBER() OVER (ORDER
BY A.UNT_TAKEN_PRGRSS DESC) FROM PS_STDNT_CAR_TERM A
 WHERE A.INSTITUTION = 'PSUNV' AND A.STRM = '0350'
 AND ROWNUM <= '10'

Presenter
Presentation Notes
ROW_NUMBER is similar to ROWNUM but works in a Analytic Function grouping instead of a Single-Row.
Also, not to be confused with ROWID.

Page 79

Analytic Functions - RATIO_TO_REPORT

• RATIO_TO_REPORT - calculates the ratio of a value to
the sum of a set of values
− ratio_to_report(expr) over ([query partition clause]) if

expr is null, then ratio_to_report value is null as well
• value set is determined by the query partition clause (if the

query partition clause is omitted, ratio-to-report is calculated
over all returned rows)

• In this example, we’ll calculate the value of each employee’s
hours spent on greeting visitors (by each employee) as
compared to the total hours spent by all employees
− SQL statement syntax:
− Select employee_name, hours, ratio_to_report(hours) over ()

EMPLOYEE HOURS RATIO_TO_REPORT

Mickey 20 0.166666667

Minnie 50 0.416666667

Goofy 10 0.083333333

Donald 40 0.333333333

Presenter
Presentation Notes
Analytic functions cannot be nested.
Cannot use RATIO_TO_REPORT or any other analytic function for expr
120 total hours spent greeting visitors by 4 employees

Page 80

Questions?

Page 81

THE POWER COMBO

Power Combo

Page 82

….. (…..) OVER (PARTITION BY …..)

CASE WHEN ….. THEN ….. ELSE ….. END

CASE WHEN (….. (…..) OVER (PARTITION BY …..))
> 0 THEN ….. ELSE ….. END

….. (CASE WHEN ….. THEN ….. ELSE ….. END)
OVER (PARTITION BY …..)

Power Combo - Introduction

Page 83

SUM (B.UNT_PRGRSS) OVER (PARTITION BY A.EMPLID)

SUM (CASE WHEN B.ENRL_ADD_DT <= :2 THEN B.UNT_PRGRSS
END) OVER (PARTITION BY A.EMPLID)

Total Credits per Person

Total Credits per Person as of Date

Power Combo - Example

Page 84

 WHEN (SUM (CASE WHEN B.ENRL_ADD_DT <= :2 THEN B.UNT_PRGRSS
 END) OVER (PARTITION BY A.EMPLID)) BETWEEN 9 AND 11
 THEN ‘3Quarter'

 WHEN (SUM (CASE WHEN B.ENRL_ADD_DT <= :2 THEN B.UNT_PRGRSS
 END) OVER (PARTITION BY A.EMPLID)) BETWEEN 6 AND 8

 THEN 'Half'

 ELSE 'Less'

 END

Enrollment Status as of Date

CASE WHEN (SUM (CASE WHEN B.ENRL_ADD_DT <= :2 THEN B.UNT_PRGRSS
 END) OVER (PARTITION BY A.EMPLID)) >= 12 THEN 'Full'

Power Combo – Example Continued

Page 85

Intermission

Page 86

Methodology - Query
1. Identify What Information is Really Needed

2. Determine Criteria Logic

3. Use Appropriate Records, Tables, and Fields

4. Perform Table Dumps to Learn Tables

a. Identify Key Fields
b. Develop Criteria for Table
c. Identify Example/Sample Data

Page 87

Methodology - Query (continued)

5. Create Table/Record Joins
 Run query after each new table join to compare what

has changed – add/ lost rows/ data.

6. Verify Data Set
 Is this the data you want to use?

Page 88

7. Determine Use of Function Statements
 How Do you want to see it?

8. Identify Data Type

a. Numbers
b. Characters
c. Date

9. Identify Needed Manipulation

a. Data Type Conversion
b. Totals
c. Grouping
d. If–Then Logic

Methodology - Function Statements (p1)

Page 89

Methodology - Function Statements (p2)

10. Build & Test in Increments

CASE WHEN (SUM(C.UNT_TRNSFR * C.GRD_PTS_PER_UNIT) /
SUM(C.UNT_TRNSFR)) IS NULL THEN A.CUM_GPA

 ELSE (CASE WHEN SUM(C.UNT_TRNSFR) IS NOT NULL OR
A.TOT_TAKEN_GPA IS NOT NULL THEN (CASE WHEN
SUM(C.GRD_PTS_PER_UNIT * C.UNT_TRNSFR) IS NULL

THEN A.TOT_GRADE_POINT ELSE SUM(C.GRD_PTS_PER_UNIT *
C.UNT_TRNSFR) + A.TOT_GRADE_POINTS END / CASE WHEN
SUM(C.UNT_TRNSFR) IS NULL THEN A.TOT_TAKEN_GPA ELSE
SUM(C.UNT_TRNSFR) + A.TOT_TAKEN_GPA END)

 ELSE 0 END)

END

CASE WHEN (SUM (CASE WHEN B.ENRL_ADD_DT <= :2 THEN
B.UNT_PRGRSS END) OVER (PARTITION BY A.EMPLID)) >= 12 THEN 'Full'

WHEN (SUM (CASE WHEN B.ENRL_ADD_DT <= :2 THEN B.UNT_PRGRSS
END) OVER (PARTITION BY A.EMPLID)) BETWEEN 9 AND 11 THEN
‘3Quarter'

WHEN (SUM (CASE WHEN B.ENRL_ADD_DT <= :2 THEN B.UNT_PRGRSS
END) OVER (PARTITION BY A.EMPLID)) BETWEEN 6 AND 8 THEN 'Half'

 ELSE 'Less'

 END

Page 90

Methodology - Function Statements (p3)

11. Query Tip Review:

#1: Limit Number of Rows Returned
ROWNUM <= 100

#2: Unique Count
COUNT (DISTINCT A.EMPLID) OVER ()

#3: Multiple Rows Count
COUNT (A.EMPLID) OVER (PARTITION BY A.EMPLID)

Page 91

Methodology - Function Statements (p4)

12. Using/Viewing SQL
 What’s REALLY going on?

Page 92

Questions?

Page 93

Exploring Further

Travel with us as we Go Deeper into the
Mysterious Universe of using Function
Statements with the PS Query Tool.

Page 94

Exploring Further – SQL Clauses

The Four Basic Areas of SQL:

SELECT

FROM

WHERE

ORDER BY

= Defines Columns & Output Format

= Identifies Source of Data

= Determines the Rows by Criteria

= Organizes Final Order

 SELECT

 FROM

Page 95

Exploring Further – WHERE Clause

Using Function Expressions as Criteria:

CASE WHEN A.ACAD_CAREER = 'UGRD' AND A.CUM_GPA > 3.6 THEN A.EMPLID

 WHEN A.ACAD_CAREER = 'PBAC' AND A.UNT_TAKEN_PRGRSS > 3 THEN A.EMPLID

 WHEN A.ACAD_CAREER = 'GRAD' AND A.CUR_GPA > 2.8 THEN A.EMPLID

 END

CASE statements in the criteria! WOW!

Page 96

Exploring Further – 1=1 (p1)

This profound concept is your key to
full SQL access to the WHERE clause!

 The Criteria simply states 1 = 1, but the SQL states:

: 1=1

Page 97

Exploring Further – 1=1 (p2)

By Using an Expression and straight SQL!

1 = 1

Page 98

Exploring Further – 1=1 (p3)

1
AND A.STRM = '1061'
AND A.EMPLID > '22800000'
AND A.EMPLID = CASE WHEN A.ACAD_CAREER = 'UGRD'
 AND A.CUM_GPA > 3.6
 THEN A.EMPLID
 WHEN A.ACAD_CAREER = 'PBAC' THEN A.EMPLID
 END

Page 99

Exploring Further – Analytic Criteria?

•So, we’ve explored using CASE as criteria.

•We’ve unlocked full access to the WHERE and the
ORDER BY clauses by using 1=1.

•Is that enough?
CAN I USE ANALYTIC FUNCTIONS AS CRITERIA?
•All joins and all WHERE, GROUP BY, and HAVING clauses are completed
before the analytic functions are processed.

•Therefore, analytic functions can appear only in the SELECT list or
ORDER BY clause – not the WHERE clause.

NO ?

Page 100

Exploring Further – Analytic Subquery

Page 101

Exploring Further – Analytic Subquery (p2)

SELECT DISTINCT A.EMPLID, A.FIRST_NAME, A.LAST_NAME, C.ADDRESS1, C.ADDRESS2, C.ADDRESS3,
C.ADDRESS4, C.CITY, C.STATE, CASE WHEN (C.COUNTRY = 'USA' AND LENGTH(TRIM(C.POSTAL)) = 9)
 THEN SUBSTR(C.POSTAL,1,5) || '-' || SUBSTR(C.POSTAL,6,4) ELSE TRIM(C.POSTAL) END, C.COUNTRY

 FROM PS_PERSONAL_DATA A, PS_ADDR_USAGE_VW C

WHERE A.EMPLID IN
 (SELECT CASE WHEN (PERCENT_RANK () OVER (PARTITION BY B.ACAD_LEVEL_BOT
 ORDER BY B.CUM_GPA DESC)) * 100 <= :2 THEN B.EMPLID END
 FROM PS_STDNT_CAR_TERM B
 WHERE B.STRM = :1
 AND B.ACAD_LEVEL_BOT IN ('30','40')
 AND B.UNT_TAKEN_PRGRSS > 0
 AND B.ELIG_TO_ENROLL = 'Y')

 AND A.FERPA <> 'Y'
 AND A.EMPLID = C.EMPLID
 AND C.ADDR_USAGE = 'DMH'
 AND C.ADDR_USAGE_ORDER = (SELECT MIN(D.ADDR_USAGE_ORDER)
 FROM PS_ADDR_USAGE_VW D
 WHERE D.EMPLID = A.EMPLID
 AND D.ADDR_USAGE = 'DMH')

Page 102

Exploring Further - HINTS

• Oracle SQL Hints
− What are they, when and why should I use them?
− Cost Based Optimizer (CBO)
− Control your query’s own fate…

• Hints are valuable commands that sometimes can be

used to help your queries execute more effectively and
efficiently.

Page 103

Exploring Further - HINTS

• What is a cost based optimizer?
− An Oracle built-in component that uses data statistics to

identify the query plan with the lowest cost on system
resources, in turn, designing an execution plan for the sql
statement.

− The CBO’s sole purpose is to optimize the query’s
execution. When it is working at it’s best, no hints should
be required.

− All this is contingent on your data structure.

Unfortunately, sometimes the data in the
database changes (oh so frequently) that the
statistical information previously gathered by the
optimizer is out of date.

Page 104

Exploring Further - HINTS

That’s where Hints come in…they allow you to
make decisions usually made by the optimizer.

Alas, not everything is definite. The caveat to this
is when the optimizer is set to lock the statistics
when ideally configured.

Page 105

Exploring Further - HINTS

There are many different types of hints, which
are categorized as follows:

• Optimization Approaches and Goals
• Access Paths and Query Transformations
• Join Orders
• Join Operations
• Parallel Execution

…and several others…

Page 106

Exploring Further - HINTS

DISCLAIMER: The majority of these Hints require
direct access to write, create or modify sql, so
hopefully you have a great working relationship
and rapport with your technical personnel.

With that said, let’s focus on a couple hints that
you CAN use directly within the PS Query Tool…

Page 107

Exploring Further - HINTS

• All_ROWS - chooses the cost-based approach to
optimize minimum total resource consumption
− Results returned ONLY after all processing has been

completed

/*+ ALL_ROWS */

• FIRST_ROWS(n) - chooses the approach to optimize

minimum resource usage (response time) to return the
first row.
− Results returned as soon as they are identified

/*+ FIRST_ROWS(n) */

Presenter
Presentation Notes
Use syntax as expression/field (1st field in query)
/*+ FIRST_ROWS(10) */ returns the first 10 rows of data as quickly as possible.
Like ROWNUM (slide 41) but optimized…

Page 108

Exploring Further - HINTS

DISCLAIMER: The CBO ignores the FIRST_ROWS
hint in SELECT statements that contain any of
the following syntax:

• GROUP BY clause
• Group functions
• Use of Distinct
• Set operators
• Union
• Intersect

Page 109

Exploring Further - HINTS

These statements cannot be optimized for best
response time because all rows accessed by the
statement must first be retrieved before
returning the first row. Although, if the hint is
used, the query will still be optimized, but for
best minimum resource consumption.

• CHOOSE - chooses between ALL_ROWS or
FIRST_ROWS based on statistics gathered
− Statistics available = ALL_ROWS
− Statistics unavailable = FIRST_ROWS

/*+ CHOOSE_ROWS */

Page 110

Questions?

Page 111

Hands-On Problem Solving

•Audience
•Practice Problems
•Ideas
•Brainstorming

Page 112

TIPS - Running Total
Generate a Running Total:

SELECT A.EMPLID, A.STRM, A.UNT_TAKEN_PRGRSS,
SUM(A.UNT_TAKEN_PRGRSS) OVER (PARTITION BY A.EMPLID
ORDER BY A.STRM, A.EMPLID),
SUM(A.UNT_TAKEN_PRGRSS) OVER (ORDER BY A.STRM, A.EMPLID)
 FROM PS_STDNT_CAR_TERM A
 WHERE ROWNUM <= '25'

Page 113

TIPS - Numbers to Words (p1)

• Converting Numbers to Words
− TO_CHAR(TO_DATE(TO_CHAR(A.ACAD_YEAR,'999999999

99'),'J'),'JSP')
• Let’s examine each component function:
• The inner TO_CHAR converts the number (which would

generally be a numeric variable) to CHAR, so the built-in
processes can do their work

• The TO_DATE converts the CHAR using the J (Julian day)
format. The Julian day is the number of days since January 1,
4712BC.

• Having established the date value, we then convert that date
back to a Julian day. Because the TO_CHAR is used in DATE
context, we can use the J mask to duplicate the original
value, and append the SP (spelling) format mask. 'SP" does
exactly that - it converts the number to words, hence the
string value above.

Page 114

TIPS - Numbers to Words (p2)

STUDENT NAME GRAD YEAR CLASS OF

Mickey 2005 TWO THOUSAND FIVE

Minnie 1998 ONE THOUSAND NINETEEN HUNDRED NINETY-EIGHT

Goofy 2000 TWO THOUSAND

Donald TBD TO BE DETERMINED

Page 115

TIPS - Amounts to Words

• Converting Amounts to Words
− SELECT 'MICKEY MOUSE', A.LINE_AMT, DECODE(FLOOR(

A.LINE_AMT),0,'ZERO',TO_CHAR(TO_DATE(FLOOR(
A.LINE_AMT),'J'),'JSP'))||' DOLLARS AND '||
DECODE(MOD(A.LINE_AMT*100,100),0,'ZERO',
TO_CHAR(TO_DATE(MOD(
A.LINE_AMT*100,100),'J'),'JSP'))||' CENTS' FROM
PS_ITEM_LINE_SF A WHERE A.EMPL_NAME = ‘Mickey
Mouse'

Page 116

Questions?

Page 117

Review
• Functions are SQL commands.
• The Three Main Categories are:

−Aggregate
−Single-row
−Analytic

• Functionality of Functions:
−Numeric
−String/Character
−Conversion
−Date and Time
− If-Then Logic
−Analytic Grouping

• Be Methodical in your Methodology.
• Get Familiar with SQL.

Page 118

Conclusion

• Reviewed both common function statements
and complex expressions.

• Explored the many possibilities of using

function statements to provide greater
flexibility, functionality and power to queries.

• Discovered creative ways to overcome many of

the limitations of the PS Query Tool for
improved reporting use.

Page 119

Resources

Harvard - Key Functions in Oracle SQL
http://vpf-web.harvard.edu/applications/ad_hoc/key_functions_in_oracle_sql.pdf

Oracle 9i SQL Reference

Web:
http://www.cs.ncl.ac.uk/teaching/facilities/swdoc/oracle9i/server.920/a96540/toc.htm
Pdf:
http://www.cs.utah.edu/classes/cs6530/oracle/doc/B10501_01/server.920/a96540.pdf

ORACLE 10g SQL Reference
web:
http://download-west.oracle.com/docs/cd/B19306_01/server.102/b14200/toc.htm
pdf:
http://download-west.oracle.com/docs/cd/B19306_01/server.102/b14200.pdf

GridinSoft Notepad Lite:
http://www.gridinsoft.com/downloads.php

HEUG 2006 Power Expressions Presentation:
http://www.heug.org/index.php?mo=do&op=sd&sid=4228&type=0

http://vpf-web.harvard.edu/applications/ad_hoc/key_functions_in_oracle_sql.pdf
http://vpf-web.harvard.edu/applications/ad_hoc/key_functions_in_oracle_sql.pdf
http://vpf-web.harvard.edu/applications/ad_hoc/key_functions_in_oracle_sql.pdf
http://www.cs.ncl.ac.uk/teaching/facilities/swdoc/oracle9i/server.920/a96540/toc.htm
http://www.cs.utah.edu/classes/cs6530/oracle/doc/B10501_01/server.920/a96540.pdf
http://download-west.oracle.com/docs/cd/B19306_01/server.102/b14200/toc.htm
http://download-west.oracle.com/docs/cd/B19306_01/server.102/b14200/toc.htm
http://download-west.oracle.com/docs/cd/B19306_01/server.102/b14200/toc.htm
http://download-west.oracle.com/docs/cd/B19306_01/server.102/b14200.pdf
http://download-west.oracle.com/docs/cd/B19306_01/server.102/b14200.pdf
http://download-west.oracle.com/docs/cd/B19306_01/server.102/b14200.pdf
http://www.gridinsoft.com/downloads.php
http://www.heug.org/index.php?mo=do&op=sd&sid=4228&type=0

Page 120

Questions?

Page 121

Contacts
Uriel Hernandez
Information Technology Applications Specialist
Project Management & Information Technology Department
Central Washington University
E-mail: hernandu@cwu.edu

Tim McGuire
Information Technology Applications Specialist
Project Management & Information Technology Department
Central Washington University
E-mail: mcguiret@cwu.edu

mailto:mcguiret@cwu.edu

This presentation and all Alliance 2007
presentations are available for download

from the Conference Site

Presentations from previous meetings are also available

	Expressions in Query:
	Presenters
	Overview
	Agenda Topics
	CWU Trivia
	PeopleSoft HRSA at CWU
	Ground Rules
	SQL FUNCTIONS*
	What are functions?
	Function Groups
	Functions Groups (continued)
	Function Statements - Review
	Function Statements - Example
	Questions?
	Function Categories
	Aggregate Functions
	Aggregate Functions
	Aggregate and Single-row Functions
	Aggregate and Single-row Functions
	Single-Row Functions
	Single-row Functions
	Single-row Functions - Types
	Questions?
	Numeric Functions - CEIL/FLOOR
	Numeric Functions - MOD/REMAINDER
	Numeric Functions - ROUND/TRUNC
	Questions?
	String Functions - CONCAT
	String Functions - INITCAP/INSTR
	String Functions - LOWER/REPLACE
	String Functions - SOUNDEX/XLAT
	String Functions - TRIM/UPPER
	String Functions - LENGTH
	String Functions - SUBSTR
	Questions?
	Conversion Functions
	Conversion Functions (continued)
	Questions?
	Date and Time Functions
	Date and Time Functions – MONTHS_BETWEEN
	Date and Time Functions – NEXT_DAY
	Questions?
	Advanced Functions
	Advanced Functions - GREATEST/LEAST
	Advanced Functions - NVL/NVL2
	Advanced Functions – ROWNUM (p1)
	Advanced Functions – ROWNUM (p2)
	Advanced Functions (continued)
	Advanced Functions - COALESCE
	Advanced Functions - DECODE
	Advanced Functions - CASE
	Advanced Functions – CASE (p1)
	Advanced Functions – CASE (p2)
	Advanced Functions – CASE (p3)
	Advanced Functions – CASE (p4)
	Advanced Functions – CASE (p5)
	Advanced Functions – CASE (p6)
	Questions?
	Analytic Functions
	Analytic Functions – Definition
	Analytic Functions – Syntax
	Analytic Functions – COUNT
	Analytic Functions – Change Group
	Analytic Functions – Distinct
	Analytic Functions – Multiple Groups
	Analytic Functions – SUM
	Analytic Functions – Query Tip #2
	Analytic Functions – Query Tip #3
	Analytic Functions – ORDER BY
	Analytic Functions – Syntax Review
	Analytic Functions - RANK
	Analytic Functions – DENSE_RANK
	Analytic Functions - PERCENT_RANK
	Analytic Functions – LAG | LEAD
	Analytic Functions – LAG | LEAD (p2)
	Analytic Functions - NTILE
	Analytic Functions – ROW_NUMBER
	Analytic Functions – ROW_NUMBER (p2)
	Analytic Functions - RATIO_TO_REPORT
	Questions?
	Power Combo
	Power Combo - Introduction
	Power Combo - Example
	Power Combo – Example Continued
	Intermission
	Methodology - Query
	Methodology - Query (continued)
	Methodology - Function Statements (p1)
	Methodology - Function Statements (p2)
	Methodology - Function Statements (p3)
	Methodology - Function Statements (p4)
	Questions?
	Exploring Further
	Exploring Further – SQL Clauses
	Exploring Further – WHERE Clause
	Exploring Further – 1=1 (p1)
	Exploring Further – 1=1 (p2)
	Exploring Further – 1=1 (p3)
	Exploring Further – Analytic Criteria?
	Exploring Further – Analytic Subquery
	Exploring Further – Analytic Subquery (p2)
	Exploring Further - HINTS
	Exploring Further - HINTS
	Exploring Further - HINTS
	Exploring Further - HINTS
	Exploring Further - HINTS
	Exploring Further - HINTS
	Exploring Further - HINTS
	Exploring Further - HINTS
	Questions?
	Hands-On Problem Solving
	TIPS - Running Total
	TIPS - Numbers to Words (p1)
	TIPS - Numbers to Words (p2)
	TIPS - Amounts to Words
	Questions?
	Review
	Conclusion
	Resources
	Questions?
	Contacts
	Slide Number 122

